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Citation: Radočaj, D.; Šiljeg, A.;
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1 Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1,
31000 Osijek, Croatia

2 Department of Geography, University of Zadar, Trg kneza Višeslava 9, 23000 Zadar, Croatia
3 Centre for Projects, Science and Technology Transfer, University of Zadar, Trg kneza Višeslava 9,

23000 Zadar, Croatia
* Correspondence: dradocaj@fazos.hr; Tel.: +385-31-554-965

Abstract: Vegetation indices provide information for various precision-agriculture practices, by
providing quantitative data about crop growth and health. To provide a concise and up-to-date
review of vegetation indices in precision agriculture, this study focused on the major vegetation
indices with the criterion of their frequency in scientific papers indexed in the Web of Science Core
Collection (WoSCC) since 2000. Based on the scientific papers with the topic of “precision agriculture”
combined with “vegetation index”, this study found that the United States and China are global
leaders in total precision-agriculture research and the application of vegetation indices, while the
analysis adjusted for the country area showed much more homogenous global development of
vegetation indices in precision agriculture. Among these studies, vegetation indices based on the
multispectral sensor are much more frequently adopted in scientific studies than their low-cost
alternatives based on the RGB sensor. The normalized difference vegetation index (NDVI) was
determined as the dominant vegetation index, with a total of 2200 studies since the year 2000.
With the existence of vegetation indices that improved the shortcomings of NDVI, such as enhanced
vegetation index (EVI) and soil-adjusted vegetation index (SAVI), this study recognized their potential
for enabling superior results to those of NDVI in future studies.

Keywords: crop health; multispectral sensor; normalized difference vegetation index (NDVI); remote
sensing; RGB sensors; Web of Science Core Collection

1. Introduction

Remote sensing can assist in various precision-agriculture practices, including seed-
ing, fertilization, protection, and cultivation, by providing data-driven information about
crop growth and health, soil conditions, and environmental factors [1–3]. This leads to
improved crop management, higher yields, and increased profitability [4]. Additionally, by
monitoring agricultural land using multitemporal remote-sensing imagery, farmers and
agricultural researchers can gain insights into the effectiveness of various farming practices,
such as irrigation and fertilization, and make decisions to optimize crop yield and reduce
waste [5]. This approach is also invaluable for agricultural land management on a larger
scale, ensuring cropland suitability prediction [6,7] and control of agricultural subsidies [8].

Vegetation indices have a crucial role in precision agriculture and crop monitoring by
providing a straightforward and reliable assessment of the condition and health of crops [9–11].
Depending on the vegetation index, information on various aspects of plant growth and
development can be monitored, such as chlorophyll content, leaf area, canopy structure,
and water status [12–14]. This information can then be used to optimize prescription
rates in precision agriculture, such as variable fertilizer application, irrigation, and pes-
ticide application [15]. This is generally performed by identifying intra-field zones that
are underperforming or experiencing stress, and target inputs to those areas to improve

Agriculture 2023, 13, 707. https://doi.org/10.3390/agriculture13030707 https://www.mdpi.com/journal/agriculture



Agriculture 2023, 13, 707 2 of 16

crop productivity and yield [16]. Vegetation indices also provide a cost-effective and non-
destructive way of crop monitoring, ensuring a widely available and environmentally
sustainable approach for assessing crop health [17,18]. The development of remote-sensing
sensors for crop monitoring in both broadband and narrowband bands opens immense
possibilities for their combination into novel vegetation indices [19]. To date, this has led
to the development of 519 total vegetation indices, per Index DataBase [20]. While the
majority of these indices serve a different purpose and have unique advantages and limita-
tions according to sensor type and field conditions, the difficulty of objective assessment
of their performance in crop-health monitoring arose [21]. Among the previous studies,
Kobayashi et al. [22] analyzed 91 spectral indices for crop classification from Sentinel-2
images, but the vast majority of these indices are underrepresented in recent Web of Science
Core Collection studies. Giovos et al. [23] reviewed a total of 97 vegetation indices in
precision viticulture, including those based on hyperspectral sensors, noting normalized
difference vegetation index (NDVI) as the most frequently applied index. As the avail-
ability of these numerous vegetation indices is dependent on the remote-sensing sensors,
Shen et al. [24] highlighted multispectral and RGB sensors as the most available solutions
for the calculation of vegetation indices presently.

Scientists and farmers have many alternatives to choose from in the selection of
vegetation indices in precision agriculture, but their large quantity might aggravate the
selection of the most effective ones due to the potential presence of redundant indices.
Therefore, this study focused on the major vegetation indices with the criterion of their
frequency in scientific papers indexed in the Web of Science Core Collection since 2000.
The main aim of this review is to provide the most recent overview of vegetation indices
according to the selection of remote-sensing sensors and to identify the most potent options
in precision agriculture, aiding study-planning in precision agriculture. In contrast to
previous reviews on the topic, this study analyzed the broader topic of the importance
of vegetation indices in general aspects of precision agriculture, with an increased focus
on determining the major vegetation indices and their in-depth state of the application in
scientific studies.

2. Global State of Vegetation-Index Application in Scientific Studies in Precision Agriculture

According to the number of scientific studies indexed in the Web of Science Core
Collection (WoSCC), four independent analyses on a global scale were made, includ-
ing: (1) the overall number of scientific papers with the topic of “precision agriculture”;
(2) the country area in km2 per scientific paper with the topic of “precision agriculture” to
provide a normalized state of scientific development per country according to the total
area; (3) the number of scientific papers with the topic of “precision agriculture” AND
“vegetation index”, narrowing the state of scientific studies specifically to observe reliance
on vegetation indices; and (4) a percentage of scientific papers with the topic of “precision
agriculture” AND “vegetation index” from overall precision-agriculture studies to pro-
vide a relative measure of the adoption of vegetation indices in research. Out of the total
9937 scientific papers that matched the search criteria, 98.7% (9811) of the papers were
indexed in the year 2000 and after, indicating rapid development in the research during the
past two decades.

The United States is the leading country in precision-agriculture research with
2172 papers, followed by China (1557 papers), India (802 papers), and Brazil (791 papers)
(Figure 1). Farmers in the United States have been especially reported to rapidly adopt
precision-agriculture technologies, such as Global Navigation Satellite System (GNSS)-
enabled tractors, and unmanned aerial vehicles (UAVs) to optimize planting, fertilization,
and other management practices [25]. While all countries generally follow this trend, spe-
cific countries such as China have focused on sustainability goals, including the reduced
use of fertilizers and pesticides, optimizing water use, and reducing waste following their
historical issues with environmental pollution [26,27]. While several larger countries domi-
nate with regard to the total number of scientific studies based on precision agriculture, the
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ratio of country area per scientific paper indicates a relatively uniform global development
of precision agriculture, with the exclusion of Africa (Figure 2).
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The predominance in precision-agriculture research of countries with a large pop-
ulations and those that are global economic leaders is an expected consequence of the
long-term funding for research and development, as well as programs to help farmers
adopt these technologies [28]. With access to advanced technology, such countries have
developed strong technology industries and many companies that specialize in developing
agricultural technologies [29]. Moreover, these countries have a high demand for food
due to their large populations, and as a result, they have developed large-scale farming
operations [30]. Precision-agriculture technologies are particularly well-suited to large-scale
operations, as they allow farmers to gather data on their crops quickly and easily, and make
informed decisions about how to manage their fields [31].

The scientific studies which explicitly included vegetation indices in precision-
agriculture topics have noticeably lower absolute numbers, while their global distribution
is very similar to the overall number of precision-agriculture studies (Figure 3). Behind
China (262 papers) and the United States (239 papers), European countries adopted vege-
tation indices the most in published studies, with Spain (119 papers), Italy (115 papers),
and Germany (108 papers) as the leading European countries. Meanwhile, the ratio of
studies on a national level that utilized vegetation indices with overall precision-agriculture
studies is more globally balanced (Figure 4). Of the countries with at least ten overall
precision-agriculture studies, several African countries (South Africa, Zimbabwe, Mali,
and Morocco) were among the top-ranked in this category and will likely benefit from the
further advancement of the utilization of vegetation indices in precision agriculture [32,33].
The state of precision agriculture in African countries is still in its early stages, but there
is growing interest and investment in this area [34]. The main restrictions of financial
resources for the initial investment caused inadequate access to required agricultural ma-
chinery and sensors, as well as the infrastructural lack of reliable internet connection [35].
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3. Present and Future Vegetation-Index-Based Applications in Precision Agriculture
Using Artificial Intelligence

Various vegetation indices are sensitive to different aspects of plant physiology, such
as chlorophyll content, leaf area, and water stress, and can be used to identify areas of the
field that require attention or treatment [36]. To efficiently manage large spectral data and
vegetation indices, there has been a growing interest in research using artificial intelligence
(AI) to extract valuable information about crop health and yield. While AI in precision
agriculture encompasses a broad range of technologies, especially the Internet of Things
(IoT) [37], the classification and regression using machine learning and deep learning are
primary technologies for processing vegetation index data [38,39]. However, it is important
to note that these techniques require significant data and computational resources, as well
as careful calibration and validation to ensure accuracy and reliability [40]. As such, their
use must be balanced with other tools and knowledge to make informed decisions about
crop management in a dynamic and complex environment.

By determining the changes in vegetation indices based on multitemporal images,
previous studies detected intra-field zones that are experiencing crop stress, caused by
either water or nutrient deficiency [16]. On a larger scale, machine learning and deep
learning algorithms were successfully adopted to classify different crops and identify
areas of the field where crop rotation or intercropping may be beneficial [41,42]. Another
frequent application of vegetation indices in recent research is crop-yield prediction, which
is often based on machine-learning regression, using multitemporal vegetation indices as
covariates [43]. This information can be used to make informed decisions about harvesting
and marketing the crop, ensuring the optimization of agricultural inputs in future growing
seasons. To determine low potential intra-field areas, it is possible to avoid low yield by
adjusting input-use as a part of variable-rate technology (VRT), especially crop disease
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detection and management, enabling the development of algorithms to prevent the spread
of disease and minimize crop loss [44]. Moreover, they are also being increasingly used
for precision fertilization with the aim of determining the optimal amount and timing of
fertilizer application [45]. This allows minimization of fertilizer use, which can be expensive
and harmful to the environment, while maximizing crop yield. If a selected vegetation
index indicates that a particular area of the field is experiencing a nutrient deficiency,
the fertilizer specifically can be applied to that area to address the deficiency without
overapplying fertilizer to other areas of the field.

While their application is presently widespread, there are several potential future
applications of vegetation indices in precision agriculture that are not presently utilized.
One such application is the use of high-resolution imagery and machine-learning algo-
rithms to map soil properties and variability across a field. By combining soil data with
vegetation indices, the present studies can be additionally enriched in the scope of fertil-
ization, irrigation, and planting, leading to improved crop health and yield [46]. Another
potential application is the use of vegetation indices to detect and monitor the presence
of invasive plant species. Invasive species can cause significant crop damage, and early
detection is crucial for effective management [47]. There is also untapped potential for
vegetation indices to be more exploited in precision harvesting, especially in determining
the optimal time to harvest the crops for maximum yield and quality [48]. This could be
particularly useful for crops such as fruits and vegetables, where harvest timing is critical
for maintaining freshness and flavor. Precision agriculture has also rapidly evolved to
be an essential aspect of modern agricultural management, relying on vegetation indices
for input data. The implementation of Agricultural Health and Safety (AHR) practices in
precision agriculture has yielded promising results in achieving sustainable agriculture
management [49]. The application of AHR techniques in precision agriculture has resulted
in transferable and applicable results for agricultural managers in several ways. Firstly,
AHR practices have provided a framework for precision-agriculture managers to operate
with minimal negative impacts on the environment and human health, as well as improving
soil quality and productivity, resulting in increased crop yields and farm profitability [50].
The benefits of AHR applications in precision agriculture are therefore transferable and
applicable to agricultural managers seeking to improve the overall sustainability of their
agricultural practices.

4. Sensors Used for Calculating Vegetation Indices in Precision Agriculture

Available remote-sensing sensors have different spectral and spatial resolutions, as
well as varying levels of atmospheric correction capabilities, which can affect the accu-
racy and reliability of vegetation-index calculations [51]. The sensors with higher spectral
resolution can detect finer differences in plant reflectance, allowing for more accurate dis-
crimination between different plant species and more precise measurement of vegetation
parameters, such as chlorophyll content and leaf area [52]. On the other hand, sensors with
higher spatial resolution can provide more detailed and accurate maps of vegetation pat-
terns and distribution, allowing for finer-scale analysis of crop health and productivity [53].
The recent studies noted RGB, multispectral, hyperspectral, thermal, radar, and LiDAR
sensors as the most frequently applied remote-sensing tools for determining crop proper-
ties [54,55]. WoSCC was therefore searched for scientific papers with the topic of “precision
agriculture” and sensor types, including “multispectral”, “hyperspectral”, “RGB”, “ther-
mal”, “radar”, and “LiDAR”. Among them, RGB, multispectral, and hyperspectral sensors
offer the capability of calculating vegetation indices due to spectral coverage in visible
and near-infrared bands [56]. According to the number of scientific papers indexed in
WoSCC since 2010, multispectral, hyperspectral, and RGB sensors are predominantly used
in precision agriculture, with RGB sensors becoming increasingly more popular since the
mid-2010s (Figure 5). The overall number of studies utilizing any of the analyzed sensor
types grew rapidly in the past decade, growing 10-fold since 2010 and more than tripling
between 2016 and 2022 (Figure 6).
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While hyperspectral sensors offer the most advanced capabilities of sensing and cal-
culating vegetation indices of the listed sensors, the high cost of commercial solutions
for hyperspectral imaging presently restricts their widespread use [57]. Both RGB (red,
green, blue) and multispectral sensors are more accessible and affordable for widespread
vegetation-index calculation in precision agriculture, although they have different strengths
and limitations [58]. RGB sensors, commonly found in low-cost consumer drones and cam-
eras, can be used to visually inspect crop health and detect any obvious issues, such as pests
or diseases, but they are limited in their ability to measure the subtler differences in plant
reflectance that are indicative of changes in vegetation health and productivity [59]. Multi-
spectral sensors, on the other hand, are designed to capture a wider range of wavelengths,
including both visible and near-infrared light. This allows for the measurement of plant
reflectance in different spectral bands, which can be used to calculate vegetation indices that
provide more detailed information about vegetation health and productivity [60]. While
RGB sensors can provide a quick visual assessment of crop health, multispectral sensors
are typically better suited for vegetation-index calculation and more detailed analysis of
vegetation health and productivity in precision agriculture [17].

5. Major Vegetation Indices in Precision Agriculture Based on Multispectral Sensors

According to the number of scientific papers indexed in WoSCC since 2000 with the
topic of “precision agriculture” and vegetation indices based on multispectral sensors, the
NDVI was dominantly the most frequently used vegetation index in precision agriculture
with a total of 2200 studies (Table 1). Like most vegetation indices based on multispectral
sensors, NDVI is calculated using the reflectance values of red and near-infrared light,
and it provides a measure of the greenness or photosynthetic activity of vegetation [61].
China (553 papers) and the United States (484 papers) accounted for 47.1% of these papers.
With the additional query of “yield” in the topic search, 1046 papers were identified, as
well as 382 papers for “biomass” and 140 papers for “fertilization”. The majority of these
studies were based on satellite mission data (925 papers), as opposed to unmanned aerial
vehicle (UAV) images (303 papers), out of which 162 papers were indexed from 2020 to
2022. The research of NDVI for the prediction of crop traits, especially yield and biomass,
of various crops was proven successful, while the exact effect of remote-sensing platforms
on prediction accuracy is still unclear. The wheat-yield prediction based on NDVI was
a particularly frequent research topic, for which Guan et al. [62] achieved the coefficient
of determination (R2) in the range of 0.60–0.81 based on UAV images, while the studies
by Labus et al. [63] and Vannoppen and Gobin [64] produced R2 from 0.44 to 0.75, and
0.66 for the same aim of wheat-yield prediction while utilizing satellite images. More-
over, a study by Benincasa et al. [65] aimed specifically to determine the ability of NDVI
from the comparison of satellite and UAV images to predict several wheat parameters
according to ground-truth data. The performance from UAV data slightly outperformed
satellite data based on the highest achieved R2, with its range of 0.56–0.94 for UAV and
0.40–0.91 for satellite data. However, due to large value ranges of achieved R2 values, the
reliable expectancy of the use of NDVI in predicting crop traits can hardly be made, as
many variables affect the outcome, including the study area, the quantity of ground-truth
data, and seasonal weather conditions [66].

Table 1. Eight major vegetation indices based on multispectral sensors with the highest total number
of appearances in WoSCC papers since 2000.

Vegetation Index Abbreviation Formula Total Number of WoSCC
Papers * (2000–2022) Reference

Normalized difference vegetation
index NDVI NDVI = NIR−R

NIR+R 2200 [67]

Enhanced vegetation index EVI EVI = 2.5 × NIR−R
NIR+6×R−7.5×B+1 459 [68]
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Table 1. Cont.

Vegetation Index Abbreviation Formula Total Number of WoSCC
Papers * (2000–2022) Reference

Green-normalized difference
vegetation index GNDVI GNDVI = NIR−G

NIR+G 329 [69]

Soil-adjusted vegetation index SAVI SAVI = 1.5 × NIR−R
NIR+R+0.5 225 [70]

Simple ratio SR SR = NIR
R 202 [71]

Normalized difference red-edge
index NDRE NDER = NIR−RE

NIR+RE 195 [72]

Optimized soil-adjusted
vegetation index OSAVI OSAVI = 1.16 × NIR−R

NIR+R+0.16 92 [73]

Global environmental-monitoring
index GEMI

GEMI = η× (1 − 0.25η)− R−0.125
1−R

η =
2×(NIR2−R2)+1.5×NIR+0.5×R

NIR+R+0.5

67 [74]

* Scientific papers indexed in Web of Science Core Collection with the topic of “precision agriculture” AND
selected vegetation index. B: blue reflectance, G: green reflectance, R: red reflectance, RE: red-edge reflectance,
NIR: near-infrared reflectance.

Despite the immense popularity of NDVI in scientific studies of precision agriculture
in the past decade (Figure 7), several indices were developed to improve its drawbacks,
potentially providing more effective crop monitoring and assessment depending on the
field and crop conditions. Among them, EVI improves NDVI by minimizing the effects
of soil background and atmospheric influences [75]. EVI takes into account the non-
linear relationship between reflectance and vegetation coverage, and it includes the blue
reflectance in addition to the red and near-infrared bands used in NDVI [76]. This makes
EVI a more robust index for analyzing vegetation health and vigor, especially in areas
with high soil background or atmospheric interference [77]. By replacing the red band
with green in NDVI formula, GNDVI is potentially more suitable in areas with high soil
background or atmospheric interference [78]. GNDVI may also be more effective than
NDVI at detecting changes in vegetation caused by environmental factors such as water
stress, disease, or nutrient deficiencies [79]. By using the soil adjustment factor, SAVI also
aims to minimize the influence of soil background and improve the sensitivity of NDVI in
areas with high soil background [80]. While SAVI is useful in areas with mixed vegetation
types, SAVI may not be as effective as NDVI in areas with low soil background or in areas
where vegetation is not the dominant land cover [81].
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6. Major Vegetation Indices in Precision Agriculture Based on RGB Sensors

Similar to the case of major vegetation indices based on multispectral sensors, the
normalized green–red difference index (NGRDI) has been the predominantly used index of
the available indices based on RGB sensors during the past decade, based on the scientific
papers indexed in WoSCC with the topic of “precision agriculture” and vegetation indices
based on RGB sensors (Table 2). The NGRDI provides a low-cost solution to replace NDVI
using the RGB sensors, allowing a similar degree of sensitivity to changes in chlorophyll
content in plants by replacing near-infrared with green reflectance [82]. While the NGRDI
can be a useful index for detecting early signs of crop stress or disease [83], the NDVI
provides a more comprehensive assessment of vegetation health and productivity. Since
NGRDI is primarily sensitive to chlorophyll content in plants [84], while the NDVI is
sensitive to the amount of vegetation present, including leaves, stems, and branches, its
application in precision agriculture is less obstructed than areas with more heterogeneous
vegetation, such as forestry [85]. However, the NGRDI has been shown to have low
variability across different crop types, while the NDVI can vary significantly depending
on the type of vegetation being measured [86]. Many authors supported the claim that
vegetation indices based on multispectral sensors enable superior performance in precision
agriculture to indices based on RGB sensors [24], while the latter are still an adequate
low-cost alternative [87]. The United States (20 papers) and China (15 papers) accounted
for the majority of scientific papers which utilized NGRDI in precision agriculture, out of
which 34 papers matched the additional topic query of “yield”, having a similar percentage
of total papers as NDVI. Their application was particularly focused on the UAVs, having
33 papers (45.8% of total papers), compared to satellite missions with 25 papers (34.7% of
total papers).

Table 2. Eight major vegetation indices based on RGB sensors with the highest total number of
appearances in WoSCC papers since 2000.

Vegetation Index Abbreviation Formula Total Number of WoSCC
Papers * (2000–2022) Reference

Normalized green–red difference
index NGRDI NGRDI = G−R

G+R 72 [88]

Excess green index ExG ExG = 2×G−B−R
B+G+R 32 [89]

Excess red index ExR ExR = 1.4×R−G
B+G+R 19 [90]

Visible atmospherically resistant
index VARI VARI = G−R

G+R−B 18 [91]

Modified green–red vegetation
index MGRVI MGRVI = G2−R2

G2+R2 16 [92]

Normalized pigment chlorophyll
ratio index NPCI NPCI = B−R

B+R 12 [93]

Triangular greenness index TGI TGI = G − 0.39 × R − 0.61 × B 10 [94]
Excess blue index ExB ExB = 1.4 × B − G 10 [95]

* Scientific papers indexed in Web of Science Core Collection with the topic of “precision agriculture” AND
selected vegetation index. B: blue reflectance, G: green reflectance, R: red reflectance.

The next top three vegetation indices based on RGB sensors with the criterion of the
frequency of use in scientific studies indexed in WoSCC also noted increased use in the past
few years (Figure 8). ExG and ExR indices follow NGRDI as the cost-effective solutions for
the assessment of vegetation health and vigor and are mutually complementary. The ExG
is sensitive to chlorophyll content of crops, with its higher values indicating healthier and
more vigorous vegetation, while lower values indicate stressed or damaged vegetation [96].
The ExR is more sensitive to density and crop distribution than ExG, complementing
the crop health assessment by ExG by providing the indirect information about the crop
biomass [97]. The VARI is based on a similar formula to that of NGRDI, with the addition of
blue reflectance in the denominator, which improves resistance to atmospheric effects such
as haze, clouds, and shadows [98]. It is particularly useful in areas with high atmospheric
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interference, such as urban environments or areas with frequent cloud cover, where other
vegetation indices may be less reliable [99]. It is also useful for monitoring vegetation
health in areas with mixed land use or variable soil conditions, where the vegetation signal
may be mixed with non-vegetation signals [100].
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7. Conclusions and Limitations of the Review

According to the scientific papers indexed in WoSCC, vegetation indices are a valuable
tool in precision agriculture, providing information on the health and growth of crops
and aiding farmers to make informed decisions and improve their yields. A total of
9937 scientific papers were analyzed in the study, out of which 98.7% of the papers were
indexed in 2000 or later. While their development gradually deceased in the past decade,
there are still unknowns of their ability to provide information about crop health in varying
field conditions. With advances in technology and data processing, vegetation indices will
potentially be calculated with greater accuracy and at higher spatial resolutions. This could
be primarily influenced by the increased use of multispectral and hyperspectral sensors,
according to trends in their frequency of use in scientific studies indexed in WoSCC. As
their cost decreases and their availability increases, particularly in less developed areas
of the world, a more widespread adoption of vegetation indices in precision agriculture
is expected. United States and China lead the world in quantity of scientific studies
in precision agriculture and the application of vegetation indices, while their scientific
development is much more balanced on a global scale when observed relative to country
area. Despite a low total number of studies, several African countries showed a tendency
of focusing on vegetation indices in precision-agriculture studies, which could be further
improved by lower cost and increased availability of remote-sensing sensors.

The NDVI was determined as the dominant vegetation index in precision agricul-
ture per scientific papers indexed in WoSCC in the past two decades, having a total of
2200 papers which matched the topic of its application in precision agriculture. The primary
application of NDVI in precision agriculture was based on satellite mission data, includ-
ing the prediction of crop traits with research topic which included “yield”, followed by
“biomass” and “fertilization”. Despite the potential advantages of EVI, GNDVI, and SAVI
over NDVI, it has a longer history of use in remote sensing and precision agriculture, with
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its expected value and performance according to ground-truth data being well documented
and researched over the years. Therefore, the increased focus on alternative vegetation in-
dices based on multispectral sensors might benefit the global knowledge of the application
of remote-sensing data in the assessment of crop health. The RGB sensors had increased
popularity in scientific studies in the past few years, primarily with the focus of developing
low-cost solutions available to farmers, but otherwise significantly trail behind vegetation
indices based on multispectral sensors in their frequency in scientific studies. Contrary
to NDVI, the most popular RGB vegetation index, NGRDI, was primarily applied using
UAV images, which indicates its significance in scientific studies focusing on the low-cost
solutions in precision agriculture, which are accessible to farmers. Nevertheless, every
analyzed aspect of vegetation indices in precision agriculture regardless of the sensor used
is in a state of rapid growth in scientific studies, which is expected to produce continuous
development in the future.

While WoSCC provided a straightforward solution for analyzing the number of scien-
tific papers which match selected topics, the limitation of this study is that study counts are
not fully reliable, primarily in two ways: (1) the scientific papers might be reporting the
use of vegetation indices in precision agriculture as the part of a discussion, which implies
that they were not directly involved in the research and (2) search results included review
papers which analyzed an aspect of the use of vegetation indices in precision agriculture.
Additionally, there are fundamental limitations of vegetation indices that should be con-
sidered when using them in precision agriculture. Environmental factors such as cloud
cover, atmospheric conditions, and soil moisture can impact the accuracy and reliability of
vegetation-index measurements. These factors must be accounted for in data analysis to en-
sure that the measurements are meaningful. Calibration is also an important consideration,
as vegetation indices must be calibrated to account for differences in sensor characteristics,
atmospheric conditions, and other factors that can impact the accuracy of measurements.
Failure to calibrate vegetation indices properly can lead to incorrect interpretations of data
and incorrect crop-management decisions.
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45. Radočaj, D.; Jurišić, M.; Gašparović, M. The Role of Remote Sensing Data and Methods in a Modern Approach to Fertilization in
Precision Agriculture. Remote Sens. 2022, 14, 778. [CrossRef]

46. Martos, V.; Ahmad, A.; Cartujo, P.; Ordoñez, J. Ensuring Agricultural Sustainability through Remote Sensing in the Era of
Agriculture 5.0. Appl. Sci. 2021, 11, 5911. [CrossRef]

47. Mehta, S.V.; Haight, R.G.; Homans, F.R.; Polasky, S.; Venette, R.C. Optimal Detection and Control Strategies for Invasive Species
Management. Ecol. Econ. 2007, 61, 237–245. [CrossRef]

48. Liu, G.; Wang, X.; Baiocchi, G.; Casazza, M.; Meng, F.; Cai, Y.; Hao, Y.; Wu, F.; Yang, Z. On the Accuracy of Official Chinese
Crop Production Data: Evidence from Biophysical Indexes of Net Primary Production. Proc. Natl. Acad. Sci. USA 2020, 117,
25434–25444. [CrossRef] [PubMed]

49. Liebman, A.K.; Augustave, W. Agricultural Health and Safety: Incorporating the Worker Perspective. J. Agromedicine 2010, 15,
192–199. [CrossRef] [PubMed]

50. Bongiovanni, R.; Lowenberg-Deboer, J. Precision Agriculture and Sustainability. Precis. Agric. 2004, 5, 359–387. [CrossRef]
51. Steven, M.D.; Malthus, T.J.; Baret, F.; Xu, H.; Chopping, M.J. Intercalibration of Vegetation Indices from Different Sensor Systems.

Remote Sens. Environ. 2003, 88, 412–422. [CrossRef]
52. Peng, Y.; Zhang, M.; Xu, Z.; Yang, T.; Su, Y.; Zhou, T.; Wang, H.; Wang, Y.; Lin, Y. Estimation of Leaf Nutrition Status in Degraded

Vegetation Based on Field Survey and Hyperspectral Data. Sci. Rep. 2020, 10, 4361. [CrossRef]
53. Goldblatt, R.; Rivera Ballesteros, A.; Burney, J. High Spatial Resolution Visual Band Imagery Outperforms Medium Resolution

Spectral Imagery for Ecosystem Assessment in the Semi-Arid Brazilian Sertão. Remote Sens. 2017, 9, 1336. [CrossRef]
54. Anastasiou, E.; Balafoutis, A.T.; Fountas, S. Trends in Remote Sensing Technologies in Olive Cultivation. Smart Agric. Technol.

2023, 3, 100103. [CrossRef]
55. Araus, J.L.; Kefauver, S.C.; Zaman-Allah, M.; Olsen, M.S.; Cairns, J.E. Translating High-Throughput Phenotyping into Genetic

Gain. Trends Plant Sci. 2018, 23, 451–466. [CrossRef]
56. Ferguson, R.; Rundquist, D. Remote Sensing for Site-Specific Crop Management. In Precision Agriculture Basics; John Wiley &

Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 103–117, ISBN 978-0-89118-367-9.
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