Bernard Kalac, apsolvent
Diplomski studij Bilinogojstvo
Smjer Zaštita bilja

BOLESTI I ZAŠTITA JEČMA I PŠENICE NA VUPIK D.D.

Diplomski rad

Bernard Kalac, apsolutent
Diplomski studij Bilinogojstvo
Smjer Zaštita bilja

BOLESTI I ZAŠTITA JEČMA I PŠENICE NA VUPIK D.D.

Diplomski rad

Povjerenstvo za ocjenu i obranu diplomskog rada:

1. prof. dr. sc. Karolina Vrandečić, predsjednik
2. prof. dr. sc. Jasenka Ćosić, mentor
3. doc. dr. sc. Jelena Ilić, član

1. UVOD

U 21. stoljeću, vremenu visoke tehnologije i intenzivne proizvodnje hrane, glavni problem proizvođačima predstavljaju bolesti, štetnici i korovi. Prema Oerke (2006.) bolesti, štetnici i korovi na globalnoj razini u usjevima ozimih žitarica unište i smanje prinosa za preko 50 %. Najveći udio odnese prisutstvo korova u iznosu od 34 %, slijede štetni kukci s 18 % te uzročnici biljnih bolesti sa 16 %. Ove štete su značajno manje nego u nekim drugim kultura koje su od velikog značaja za ishranu ljudi. No znajući da žitarice zauzimaju najveći svjetski i europski udio u proizvodnji hrane u iznosu od 33,2 % (Slika 1.), a druge biljne vrste koje se koriste za industrijsku proizvodnju poput na primjer suncokreta, soje i uljane repice zauzimaju 7 %, ovi gubici su veoma značajni.

Slika 1. Omjer proizvodnje žitarica u odnosu na druge biljne vrste

(izvor: http://ec.europa.eu)

Pšenica i ječam su vrste koje pripradaju u porodicu Poaceae (trave). Uzgajaju se na velikim površinama kako kod nas, tako i u svijetu. Pšenična zrna su glavni prehrambeni proizvod koji se rabi za izradu brašna, tjestenine, peciva, kolača, kao i za proizvodnju pšeničnog piva ili nekakvih drugih vrsta alkohola, dok se ječam koristi najčešće u proizvodnji slada za potrebe pivsku industriju te u ishrani stoke. Postoje ozime i jare forme pšenice i ječma. Pšenice prema zrnu
djelimo na tvrde i meke pšenice dok ječam dijelimo na pivski i stočni. U Hrvatskoj se uglavnom uzgajaju ozime forme meke pšenice koja je glavna krušarica. Tvrde pšenice se koriste za proizvodnju tjestenine, ali je u hrvatskoj proizvodnja takve pšenice vrlo ograničena. Pšenica se u Hrvatskoj proizvodi na prosječno 150 000 do 170 000 ha (Brašnić, 2017.), a prosječan prinos je 4,7 t/ha (Tablica 1.). Ječam se uzgaja na oko 50 000 hektara, a prosječni prinos je između 3 i 4 t/ha (http://gospodarski.hr).

| Kultura | Površina (tis. ha) | Prinos (t/ha) | Proizvodnja (t) |
|---------|-------------------|--------------|----------------|----------------|
| kukuruz | 288 | 4,94 | 1 424 529 |
| pšenica | 175 | 4,64 | 812 347 |
| ječam | 59 | 3,82 | 225 265 |

Tablica 1. Površine, prinosi i proizvodnja najvažnijih žitarica u Hrvatskoj (2007.)

Korijen pšenice i ječma prodire u dubinu od 1,5 - 2 m (Pospišil, 2010.), a glavnina korijena se nalazi u oraničnom sloju do 30 cm. Pšenica tijekom čitave vegetacije razvije dvije vrste korijena: primarni koji se javlja odmah u klijanju te sekundarni koji se javlja u stadiju busanja. Primarni korijen u kasnijim stadijima služi za opskrbu vodom iz dubljih slojeva tla, dok sekundarno korijenje apsorbira vodu i hranjive tvari iz oraničnog sloja.

Stabljika pšenice i ječma se sastoji od pet do sedam nodija (koljenaca) i internodija (članaka). Visina stabljike varira ovisno o sorti te kod pšenice može narasti do 100 cm, a kod ječma i do 150 cm. Oplemenjivači su stvorili nove sorte s nižom stabljikom čime se postigla veća otpornost na polijeganje. U stadiju busanja kod pšenice iz čvora busanja se uz primarnu stabljiku pojavljaju jedna do tri nove stabljike (sekundarni izboji), dok ječam ima veći koeficijent busanja ovisno o uvjetima uzgoja.

Listovi pšenice izrastaju na nodijima te ih ima pet do sedam. Za prinos pšenice i ječma bitna su samo gornja dva lista koji imaju najveću asimilacijsku površinu. Na čitavoj biljci najbitniji je list
zastavičar, na kojega se posebno pazi jer omogućava kvalitetno nalijevanje zrna u klasu. List se sastoji od rukavca i plojke. Rukavac je dio kojim se cijeli list veže na stabljiku. Rukavac sadrži uške koje obavijaju prijelaz stabljike i lista.

Uz uške se nalazi i jezičac koji sprječava ulazak vode u prostor gdje se spajaju stabljika i list te se samim time sprječava razvoj mikroorganizama. Plojka je dio lista koji je površinom višestruko veći. Izražene je centrale nervature i izduženog oblika.

Cvijet pšenice i ječma je klas. Klas se sastoji od klasnog vretena i klasića. U svakom klasiću se nalazi od 1 do 9 cvjetova od kojih se u prosjeku oplodi 3 do 4 cvijeta (ovisno o genotipu), a iz cvjetova nastaju zrna. Pšenica i ječam su samooplodne kulture te se oplodnja odvija unutar jednog cvijeta. Cvijet se sastoji od 3 prašnika i jednog tučka. Cvatnja pšenice (Slika 2.) i ječma traje oko tjedan dana i odvija se početkom mjeseca svibnja kod pšenice dok ječam cvate nešto ranije (krajem travnja).

![Slika 2. Pšenica u cvatnji](izvor: Kalac B., 2017.)
Plod pšenice i ječma se naziva zrno. Zrno se sastoji od tri dijela: omotač, endosperm i klica. Uloga omotača je zaštita klice i endosperma, a sastoji se od unutrašnjeg i vanjskog omotača. Klica je biološki najvažniji dio zrna za reprodukciju. Sastoji se od klicinog štitića, klicinog korjenčića, klicinog stabalca i klicinog listića. Endosperm je najvažniji dio s ekonomskog stajališta jer sadrži ugljikohidrate i bjelančevine. Masa 1000 zdravih zrna kod pšenice bi u prosjeku trebala iznositi oko 40 g, a kod ječma oko 50 g ovisno o sorti i okolišnim uvjetima uzgoja.

1.1. CILJ RADA

Cilj ovog istraživanja je utvrditi pojavu uzročnika bolesti na pšenici i ječmu na Vupik d.d. u vegetaciji 2016./2017. te mogućnosti zaštite.
2. PREGLED LITERATURE

Veliku ulogu u podizanju kvalitete proizvodnje i dobivanja većih prinosa po jedinici površine u posljednjih pola stoljeća imaju kemijska sredstva za zaštitu bilja od vrsta koje ugrožavaju rast i razvoj uzgajanih biljaka. Pšenicu na globalnoj razini napada preko 200 uzročnika bolesti, a oko pedeset vrsta smatra se ekonomski značajnim (Kostić i sur., 1987.). Svaki dio Zemlje obilježen je specifičnim klimatskim uvjetima te se stoga neke vrste zadržavaju samo u određenim područjima dok ostale uspjevaju preživjeti i održavati se gotovo u svim agroklimatskim područjima svijeta. Intenzitet razvoja bolesti ovisi o temperaturama zraka i tla, relativnoj vlazi zraka odnosno vlazi tla, količini inokuluma te osjetljivosti sorti. Najčešći uzročnici bolesti na našim prostorima prema (Sanseović, 2006.) su različite pjegavosti lista (Slika 3.), patološka polijeganja ili bolesti vlati, pepelnice, hrđe i fuzarioze.

Slika 3. Mrežasta pjegavost lista ječma (izvor: Kalac B., 2017.)
2.1 Smeđa pjegavost lista *Mycosphaerella graminicola* (Fuckel) J. Schrot
(anamorf *Septoria tritici* Rob. Et Desm.)

Smeđa pjegavost lista pšenice je najrasprostranjenija lisna bolest pšenice. Osim pšenice, ovom uzročniku bolesti domaćini su i ostale ozime žitarice kao i korovne vrste iz porodice *Poaceae* (Suffert i sur., 2011). Štete na usjevima pšenice su gospodarski veoma značajne. Prema Eyal (1981.) štete koje *Septoria* vrste pričinjavaju na globalnoj razini kreću se između 31 i 53 %. Na području Hrvatske točnih podataka o štetama od septorioza nema. Simptomi koji se lako uočavaju su na plojkama listova, dok se puno rjeđe simptomi mogu pojaviti na rukavcu lista i vlati. Već kasno u jesen mogu se pronaći donji listovi s klorotičnim zonama. Simptomi se prvo pojavljuju na najdonjim listovima te kako vegetacija odmiče, ascedentno se šire na gornje listove. Pjege su žuto smeđe ili sivkaasto zelene boje (Slika 4.). Ako se nekoliko pjega spoji dolazi do prekida protoka vode i hranjivih tvari prema svim dijelovima lista te se list suši (Slika 5.).

Slika 4. Smeđa pjegavost lista pšenice (izvor: Kalac B., 2017.)
Slika 5. Osušeni vrh lista pšenice uzrokovan smedom pjegavosti (izvor: Kalac B., 2017.)

Zaraze uzročnikom smeđe pjegavosti na pšenici događaju se već u kasnu jesen pod uvjetom da su rokovi sjetve raniji, povoljne temperature (Slika 6.) te sortimenti koji su slabije otporni na ovog uzročnika. Takve zaraze se često ne zapažaju.

Glavni izvor zaraze su zaraženi biljni ostatci iz prošlih vegetacija i samonikle biljke pšenice i ječma i ostalih trava iz porodice Poaceae. Prenošenje zaraze sjemenom je moguće, ali gotovo bez

2.2. Žuta hrđa

Puccinia striiformis Westend.
(sin. *Puccinia glumarum* Erikss. and Henn)

Simptomi se mogu najčešće uočiti na plojkama listova te na pljevicama, iako je gljiva sposobna inficirati sve nadzemne dijelove biljke. Na plojci lista nakon infekcije mogu se pronaći tipični simptomi žutih crtičavih nakupina uredosorusa (Slika 7.) po kojima je i sama bolest dobila ime. Prvi simptomi pojavljuju se na donjim listovima, a kasnije i na listu zastavičaru. U povoljnim
uvjetima simptomi se pojavljuju već u kasnu jesen, a najčešće se uočavaju tek u fazi klasanja. U fazi zriobe simptomi se u slučaju zaraze mogu uočiti i na pljevicama (Slika 8.).

Slika 7. Nakupine uredosorusa na listu pšenice (izvor: http://www.pflanzenkrankheiten.ch)

Slika 8. Simptomi žute hrđe na pljevicama (izvor: Kalac B., 2016.)

Žuta hrđa je autoecijska mikrociklična hrđa kojoj se životni ciklus svodi na izmjenu samo dva stadija, za razliku od nekih drugih žitnih hrđa koje su makrociklične vrste te za preživljavanje moraju proći i do 5 stadija. Prema Jin i sur. (2010.) za stadij uredosorusa i stadij teliosorusa gljiva
koristi kao domaćina pšeniku, ječam i druge srodne vrste dok za ecidijski stadij naznačen kao stadij prijelaza koristi vrste iz roda *Berberis*.

Uredosorusi su okruglastog ili blago izduženog oblika a veličina im varira te prosječno iznosi 0,5 x 1,0 mm. Unutar uredosorusa nalaze se jednostanične uredospore veličine 13-23 x 14-36 μm (Stojanović, 2004.). Teliospore su dvostanične i pohranjene su u teliosorusima, a dimenzije su im 15-24 x 30-57 μm. One su sposobne klijati u bazidiospore ali im uloga u životnom ciklusu nije razjašnjena i bitna. Optimalne temperature za klijanje uredospora su između 10 i 12 °C (Rapilly, 1979.). Vrijeme od infekcije do stvaranja novih uredospora se može najbrže odviti kada se temperature zadrže 10 do 15 dana između 12 i 19 °C (Mccgregor i Manners, 1985.) te je, u tom periodu, vlažnost zraka visoka.

2.3 Pepelnica

Blumeria graminis (DC.) Speer
(sin. Oidium monilioides (Nees) Link)

Gljiva parazitira na svim strnim žitima kao i na velikom broju vrsta iz porodice *Poaceae*. Najveći gubitci u proizvodnji su na pšenici i ječmu. Prema Oerke (1994.) gubitci na pšenici i ječmu uzrokovani pepelnicom mogu biti do 40 %. U Hrvatskoj se pepelnica javlja svake godine, međutim ne čini velike štete i rijetko je potrebno provesti zaštitu fungicidima samo zbog pojave ove bolesti. Gljiva se može češće pronaći u usjevima koji su bogato ishranjeni dušikom. Oplemenjivanjem su se u posljednjih 15-ak godina stvorili sortimenti pšenice i ječma koji su vrlo otporni na ovog uzročnika bolesti te je stoga ovoj gljivi smanjena važnost u planiranju zaštite usjeva od bolesti.

Na listovima se uočavaju bjeličaste do sivkaste prevlake veličine oko 5 mm. U ranijim fazama razvoja pojavljuju se na donjim dijelovima biljke, a kasnije se formiraju i na gornjim, velikim listovima. Boja micelija s vremenom tamni, isprva je sivkaste nijanse, a pri kraju vegetacije i do svjetlo smeđe boje (slika 9.). Pri jačoj kiši micelij se može isprati kao i kod većine gljiva koje su epifiti.
B. graminis je epifitni obligatni parazit kojemu se micelij nalazi na površini, prvenstveno, lista, ali i drugih zelenih organa. Konidije (oidije) nastaju fragmentacijom micelija, uobičajeno 6 do 8 konidija u nizu. Prema Hoffman i Schmutterer (1999.) veličina oidija je 8-10 x 25-30 μm. Oidije u doticaju s blinjim tkivom klijaju u infektivnu hifu koja pomoću apresorija prijanja uz tkivo. Hifa prodire u tkivo te u zaraženim stanicama stvara haustorije pomoću kojih crpi hranjiva iz stanice. Infekcija se može odviti u rasponu između 5 i 30 °C., dok su optimalne temperature za infekciju između 15 i 20 °C. Isto, autori navode da se u optimalnim uvjetima infekcija može završiti za 10 sati, a haustoriji se mogu razviti za 35 sati. Idealni uvjeti za sporulaciju ove gljive su temperatur 20 °C te 100 % vlaga zraka. U jesenskom dijelu infekciju vrši spolni stadij gljive pomoću askospora, dok u prolećnom dijelu vegetacije zarazu najčešće obave oidije.
2.4. Žutosmeđa pjegavost lišća pšenice

Pyrenophora tritici-repentis (Died.) Drechsler
(anamorf: *Drechslera tritici-repentis* (Died.) Shoemaker)

P. tritici-repentis prvi puta je utvrđena na pšenici 1928. u Japalu, a zatim i u nekim zemljama Europe, Amerike i Azije. Istraživanje Tomić i Čizmić (2005.) otkriva prvi puta pojavu ove bolesti u Hrvatskoj na sorti Renan na području Virovitičko-podravske županije. Kao i sve bolesti lista, ova gljiva može pri jakom napadu uzrokovati sušenje cijelog lista te smanjiti prinos i do 50 %. Gljivi domaćin osim pšenice mogu biti ječam, raž i poneki korovi iz porodice *Poaceae*.

Simptomi ove bolesti mogu biti okarakterizirani kao kombinacija nekroze i kloroze. Simptomi se različito očituju na sortama koje su tolerantnije i onima koje su manje tolerantne. Kod tolerantnijih sorata mogu nastati manje pjegice bez klorotičnog okruženja (slika 10.)

Na osjetljivijim sortama pjege su tamnosmeđe i nekrotične u centralnom dijelu, a okružuje ih žuta klorotična zona (slika 11.). U slučaju povoljnih uvjeta i nastanka jačih zaraza pjege se mogu spojiti te uzrokovati sušenje cijelog lista. Gljiva najčešće zaražava plojku lista iako može parazitirati i na klasu i zrnu (Jurković i sur., 2016.). Micelij koji gljiva formira je sivo bijele boje i
na njemu se nalaze konidiofori s konidijama. Ovaj nespolni dio razvojnog ciklusa obavlja sekundarne infekcije tijekom vegetacije dok primarne infekcije vrše askospore. Askospore se nalaze u pseudotecijima tijekom zimskog perioda.

Pseudoteciji se zadržavaju na mrtvoj organskoj tvari iz prošle vegetacije te za povoljnog vremena oslobađaju askospore koje se šire vjetrom na udaljenosti do nekoliko centimetara (Wegulo, 2011.). Optimalne temperature za sazrijevanje pseudotecija su između 15 i 18 °C (Kader, 2010.). Pri dospijeću konidije ili askospore na list domaćina koji je osjetljiviji na ovog uzročnika bolesti one klijaju u hife koje prodiru putem puči u stanice lista te stvaraju micelij. Pri temperaturama od oko 20 °C i visoku vlažnost zraka ili rosu u periodu od 6 do 24 sata događa se najviše zaraza (Jurković i sur., 2016.). U slučaju da temperature prijeđu preko 27 °C intenzitet razvoja ove gljive drastično opada.
2.5. Palež klasa i klijanaca

Gibberella zeae (Schwein) Petch.

(anamorf *Fusarium graminearum* Schwabe.)

Fusarium graminearum je gljiva koja uzrokuje velike štete na gotovo svim vrstama žita, prvenstveno na pšenici i kukuruzu. U struci se više koristi naziv nespolnog stadija *Fusarium graminearum*. Gljiva štete najčešće pričinjava u vidu smanjenja kvalitete i težine zrna odnose u ovom vrstom. Ova gljiva prilikom rasta i razvoja luči toksine zearalenone i trihotecene te joj je zato pridana posebna pažnja u proizvodnji hrane za stoku i ljude. Plodored u kojem se često izmjenjuju kukuruz i pšenica znatno povećava jačinu zaraze ovom vrstom (Ćosić i sur., 2004.). Prema Parry i sur. (1995.) štete koje *F. graminearum* na globalnoj razini uzrokuje su između 15 i 70%.

Ova gljiva na pšenici i ječmu izaziva sljedeće tipove bolesti: palež klijanaca, trulež korijena i vlati i palež klasa. Prvi gubici koji mogu nastati su prorijeđenje sklopa uzrokovano palež klijanaca. Palež klijanaca je posljedica sjetve zaraženog sjemena ili sjetva zdravstveno ispravnog sjemena u zaraženo tlo.

U vrijeme klijanja mogu se uočiti smeđe pjege koje uslijed jačeg napada dovode do odumiranja biljke. Ukoliko biljka preživi napad, u kasnijem razvoju uočava se smanjenje mogućnosti napretka. Trulež korijena ili vlati najčešće je uzrokovan ranom zarazom biljke koja preživljava te je kasnije pogađa ovaj oblik bolesti. Uzročnik u vlat prođe putem koljenca te tako obavi zarazu. Simptomi se očituju u vidu tamno obojenih mrlja bez oštrih rubova prema zdravo tkivu. Simptomi na klasu se u početku teško mogu primjetiti. Prvi simptomi su smeđe ili zelenkasto vodenaste pjege na pljevicama. S pljevicama se u povoljnim uvjetima zaraza širi na klasno vreteno. U ranijim zarazama štete su vrlo velike, zrna su potpuno deformirana i zarkžljala dok kasnija zaraza ne utječe toliko na izgled i težinu zrna i njegovu klijavost. U mliječnoj zriobi simptomi se najlakše uočavaju. Klasovi koji su zdravi povijeni su od težine zrna dok klasovi koji stoje usporedivo su lakši te ukazuju na prisutnost zaraze ovim uzročnikom bolesti (slika 12.). Ako su uvjeti povoljni za razvoj gljive pojavljuju se nakupine narančaste do crvenkaste boje. To su sporodohije koje se sastoje od konidiofora na kojima se nalaze brojne konidije (Jurković i sur., 2016.).
2.6. Uzročnik patološkog polijeganja žitarica

Ocilumacula yallundae (Wallwork & Spooner) Crous & Gams
(anamorf: *Pseudocercosporella herpotrichoides* (Fron) Deighton)

Uzročnik patološkog polijeganja pšenice nema pretjerani gospodarski značaj, ali je zabilježen u mnogim zapadnoeuropskim i Skandinavskim zemljama te Australiji, Novom Zelandu, Rusiji i drugdje (Wiese, 1991.). Pšenica je osjetljivija na napad ovog parazita od ječma i ostalih strnih žitarica. U literaturi su malobrojni navodi o gubicima uzrokovanim napadom *O. yallundae*. Topolovec-Pintarić i Cvjetković (2003.) navode da gubici mogu biti i do 60 %. Gljiva najčešće zaražava pojedinačne vlati u busu te tako smanjuje prinos. U slučaju da se zaraza proširi na sve vlati u busu, biljka odumire i prinos je uništen. Zarazom se prekida protok vode i hranjivih tvari od korijena prema vrhu biljke. Simptomi se mogu uočiti na visini oko 5 cm iznad površine tla. U jesen kada su žitarice u ranim fazama razvoja mogu se uočiti žućkaste smeđe pjege na rukavicima listova uz samu površinu tla. U proljeće se napredovanjem zaraze uočavaju eliptične pjege iznutra žutih nijansi, a izvana su omeđene smeđim rubovima nejasno odvojenim od zdravog tkiva (slika 13.).

Slika 13. Uzročnik patološkog polijeganja na ječmu (izvor: Kalac B., 2017.)
Za vlažnijeg vremena koje pogođuje razvoju ove bolesti, unutrašnjost pjege tamni zbog stvaranja mnoštva konidija (slika 14.). Pjege takvog oblika izgledom podsjećaju na oko. U centralnom dijelu pjege razvijaju se sklerociji crne boje. Razaranjem tkiva koje se nalazi ispod samih pjege dolazi do truleži, a time i do polijeganja vlati. Biljke koje su zaražene su ranije zrele, zrna su lakša te je time gubitak na prinosu velik.

Slika 14. O. yallundae na vlati ječma (izvor: Kalac B., 2017.)
2.7. Mrežasta pjegavost ječma *Pyrenophora teres* Drechsler
(anamorf *Drechslera teres* (Sacc.) Shoemaker)

Mrežasta pjegavost je vrlo raširena i značajna bolest ječma. Parazitira na svim vrstama iz roda *Hordeum*, divljim i uzgajanim. Osim na njima gljiva parazitira na 65 biljnih vrsta iz 18 rođeva unutar porodice *Poaceae* (Brown i sur., 1993.). Na području Hrvatske ovaj uzročnik bolesti je značajan u proizvodnji ječma i javlja se, u slabijem ili jačem intenzitetu, svake godine. Pojavljuje se u jačem intenzitetu na manje tolerantnim sortama i na usjevima koji su rano zasijani (Korić, 2008.). Štete na globalnoj razini su između 10 i 40% (Steffenson i sur., 1991.).

Simptomi su male crne pjege koje su povezane u finu mrežicu (slika 15.). Simptomi mogu biti i male crne pjegice, ali koje nisu povezanu u mrežicu. Taj tip bolesti zovemo još i točkasta pjegavost, a uzročnik je *Pyrenophora teres* forma *maculans*. Prve simptome možemo uočiti u kasnu jesen na ranije zasijanim usjevima. Simptomi su male tamno smeđe okruglaste do eliptične pjege.

Slika 15. *P. teres* na ječmu u busanju (izvor: Kalac B., 2017.)
Na tolerantnijim sortama ječma pjege u kasnijim stadijima ostaju manje i nisu izraženo povezane mrežom dok se na osjetljivijim sortama pjege povećavaju (slika 16.), a oko pjega nastaju klorotične zone i mreža između pjega je više izražena.

P. teres u svom razvojnom ciklusu, spolnom i nespolnom, razvija višestanični intercelularni micelij. *P. teres* i *P. teres* forma *maculans* u svom razvoju mogu ispreplitati hife te se povezuju i miješaju simptome na domaćinu. Gljiva u jesen na ostacima ječma iz prošle vegetacije kopulacijom anteridija i askogona tvori pseudotecije koji su smješteni subepidermalno kako bi lakše prezimili niske temperature. Kako bi pseudotecij sazrio potrebna su mu oko 2 mjeseca s temperaturama između 10 i 15 °C (Jurković i sur., 2016.). U rano proljeće askospore se oslobađaju iz pseudotecija te vrše primarne infekcije. Vrlo brzo nakon primarne infekcije koji vrši spolni stadij ove gljive, zaraze počinju činiti konidije koje su dio razvojnog ciklusa nespolnog stadija. Askospore i konidije sposobne su klijati unutar vrlo kratkog vremenskog perioda (za manje od 30 minuta) pod uvjetom da je temperature zraka između 20 i 30 °C i uz povećanu vlagu zraka (Jurković i sur., 2016.). Idealni uvjeti za infekcije su pri temperature od 15 do 25 °C i vlagu zraka u iznosu od 100% u trajanju 10 do 30 sati. Konidije mogu ostati klijave najviše do 3 mjeseca dok je micelij sposoban održati se i do 15 mjeseci (Shipton i sur., 1973.).

Slika 16. *P. teres* na sorti ječma Maxim (izvor: Kalac B., 2017.)
3. MATERIJAL I METODE

Istraživanje je provedeno na površinama Vupik d.d. na temelju vizualnih i mikroskopskih pregleda listova pšenice i ječma s uvećanjem do 1000 x. Površine na kojima je praćeno zdravstveno stanje pšenice površine su 18 (Sofru, RWA) i 38 ha (Bologna, Syngenta), a površine na kojima je posijan ječam površine su 44 (Maxim, PIO) i 13 ha (Barun) (tablica 2.). Sjetva je obavljena sijačicom Horsch Pronto (slika 17.) s međurednim razmakom od 15 cm. Prihrana i osnovna gnojidba izvršene su rasipačem Bogballe (tablica 3), a za apliciranje zaštitnih sredstava korištene su prskalice Hardi Commander 3200 (slika 18.) koje imaju mogućnost zračne potpore. Zahvat priključnih strojeva za zaštitu i prihranu je 24 metra te su stalni tragovi u sjetvi tako i postavljeni.

Tablica 2. Sjetva i sorte po tablama

<table>
<thead>
<tr>
<th>Lokacija</th>
<th>Tabla</th>
<th>Sorta</th>
<th>Datum sjetve</th>
<th>kg/ha</th>
<th>Ostvareni sklop/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bobota</td>
<td>118</td>
<td>Bologna</td>
<td>7.10.2016.</td>
<td>164</td>
<td>427</td>
</tr>
<tr>
<td>Bobota</td>
<td>123</td>
<td>Sofru</td>
<td>8.10.2016.</td>
<td>227</td>
<td>409</td>
</tr>
<tr>
<td>Bobota</td>
<td>161</td>
<td>Maxim</td>
<td>8.10.2016.</td>
<td>172</td>
<td>373</td>
</tr>
<tr>
<td>Bobota</td>
<td>169</td>
<td>Barun</td>
<td>7.10.2016.</td>
<td>180</td>
<td>418</td>
</tr>
</tbody>
</table>

Tablica 3. Gnojidba pšenice i ječma

<table>
<thead>
<tr>
<th>Tabla</th>
<th>Sorta</th>
<th>UREA kg/ha</th>
<th>1. prihrana KAN</th>
<th>2. prihrana KAN</th>
<th>3. prihrana KAN</th>
<th>Dušik ukupno kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>118</td>
<td>Bologna</td>
<td>135</td>
<td>150</td>
<td>150</td>
<td>100</td>
<td>169.1</td>
</tr>
<tr>
<td>123</td>
<td>Sofru</td>
<td>135</td>
<td>150</td>
<td>150</td>
<td>100</td>
<td>169.1</td>
</tr>
<tr>
<td>161</td>
<td>Maxim</td>
<td>130</td>
<td>150</td>
<td>100</td>
<td>-</td>
<td>127.3</td>
</tr>
<tr>
<td>169</td>
<td>Barun</td>
<td>130</td>
<td>150</td>
<td>100</td>
<td>-</td>
<td>127.3</td>
</tr>
</tbody>
</table>

Prihrana se obavila u dva obroka KAN-om na ječmu te u 3 obroka KAN-om na pšenici (tablica 3.).
Slika 17. Sijačica Horsch Pronto (izvor: Kalac B., 2016.)

Slika 18. Prskalice Hardi commander (izvor: Kalac, B., 2017.)
4. REZULTATI

Tablica 4. Prvi tretman fungicidom na ječmu

<table>
<thead>
<tr>
<th>Sorta</th>
<th>Datum</th>
<th>Doza</th>
<th>Utrošak vode/ha</th>
<th>Aktivna tvar</th>
<th>Trgovački naziv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barun</td>
<td>18.03.2017.</td>
<td>1 l/ha</td>
<td>200</td>
<td>Tebukonazol (250 g/l) + protiokonazol (125 g/l)</td>
<td>Prosaro</td>
</tr>
<tr>
<td>Maxim</td>
<td>23.03.2017.</td>
<td>1 l/ha</td>
<td>200</td>
<td>Tebukonazol (250 g/l) + protiokonazol (125 g/l)</td>
<td>Prosaro</td>
</tr>
</tbody>
</table>

Slika 20. *P. teres* na sorti Barun (izvor: Kalac B., 2017.)
Slika 21. Oštećenje na listu ječma uzrokovano *P. teres* uočeno pod mikroskopom

(izvor: Kalac B., 2017.)

Krajem mjeseca ožujka zabilježene su niske temperature do -2,2 °C popraćene mrazom (slika 22.). Nekoliko dana poslije pojave mraza uočena su na listovima oštećenja (slika 23.) te na sorti Bologna uočena je pojava simptoma *Pyrenophora tritici-repentis* (slika 24.). Nakon toga obavljena je zaštita fungicidom Duett ultra (tablica 5.).

Slika 22. Dijagram temperature, vlage zraka i oborina od 27. ožujka do 2. travnja na lokaciji Bobota (izvor: https://www.fieldclimate.com/new)
Slika 23. Oštećenja od mraza na listu pšenice
(izvor: Kalac B., 2017.)

Tablica 5. Prvi tretman fungicidom na pšenici

<table>
<thead>
<tr>
<th>Sorta</th>
<th>Datum</th>
<th>Doza</th>
<th>Utrošak vode/ha</th>
<th>Aktivna tvar</th>
<th>Trgovački naziv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bologna</td>
<td>05.04.2017</td>
<td>0,6 l/ha</td>
<td>200</td>
<td>Epoksikonazol (187 g/l) + Tiofanat metil (310 g/l)</td>
<td>Duett ultra</td>
</tr>
<tr>
<td>Sofru</td>
<td>05.04.2017</td>
<td>0,6 l/ha</td>
<td>200</td>
<td>Epoksikonazol (187 g/l) + Tiofanat metil (310 g/l)</td>
<td>Duett ultra</td>
</tr>
</tbody>
</table>

Drugi tretman fungicidom na obje sorte ječma obavljen je tri tjedna nakon prvog (tablica 6.). Ječam je tada bio u punom vlatanju dok je prilikom prvog tretmana bio u završnim fazama busanja.

Tablica 6. Drugi tretman fungicidom na ječmu

<table>
<thead>
<tr>
<th>Sorta</th>
<th>Datum</th>
<th>Doza</th>
<th>Utrošak vode/ha</th>
<th>Aktivna tvar</th>
<th>Trgovački naziv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barun</td>
<td>12.04.2017</td>
<td>0,6 l/ha</td>
<td>200</td>
<td>Epoksikonazol (187 g/l) + Tiofanat metil (310 g/l)</td>
<td>Duett ultra</td>
</tr>
<tr>
<td>Maxim</td>
<td>12.04.2017</td>
<td>0,6 l/ha</td>
<td>200</td>
<td>Epoksikonazol (187 g/l) + Tiofanat metil (310 g/l)</td>
<td>Duett ultra</td>
</tr>
</tbody>
</table>

U ječmu je krajem travnja uočena vrlo slaba pojava simptoma _P. teres_ forma _maculans_ (slika 25.) koja je uslijedila nakon perioda zahlađenja i oborine što je pogodovalo razvoju bolesti (slika 26.). Nakon pojave simptoma uslijedio je topliji vremenski period bez oborina i visoke relativne vlage zraka te se stoga nije krenulo u obavljanje trećeg fungicidnog tretmana na ječmu.
Drugi tretman fungicidom (preventivni) na obje sorte pšenice obavljen je krajem travnja (tablica 7.). Kraj mjeseca travnja donio je oborine i temperature pogodne za razvoj bolesti na pšenici (slika 26.).

Tablica 7. Drugi tretman fungicidom na pšenici

<table>
<thead>
<tr>
<th>Sorta</th>
<th>Datum</th>
<th>Doza</th>
<th>Utrošak vode/ha</th>
<th>Aktivna tvar</th>
<th>Trgovački naziv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bologna</td>
<td>25.04.2017.</td>
<td>1,2 l/ha</td>
<td>200</td>
<td>Prokloraz (267 g/l) + Tebukonazol (133 g/l)</td>
<td>Zamir</td>
</tr>
<tr>
<td>Sofru</td>
<td>25.04.2017.</td>
<td>1,2 l/ha</td>
<td>200</td>
<td>Prokloraz (267 g/l) + Tebukonazol (133 g/l)</td>
<td>Zamir</td>
</tr>
</tbody>
</table>

Na obje sorte ječma nije odrađen treći tretman fungicidom (tablica 8.), dok je na obje sorte pšenice obavljen i treći tretman i to za zaštitu klasa. Tretman za zaštitu klasa je obavljen početkom cvatnje kada je zamjećena pojava prvih cvjetića.

Tablica 8. Treći tretman fungicidom na pšenici

<table>
<thead>
<tr>
<th>Sorta</th>
<th>Datum</th>
<th>Doza</th>
<th>Utrošak vode/ha</th>
<th>Aktivna tvar</th>
<th>Trgovački naziv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bologna</td>
<td>08.05.2017.</td>
<td>1 l/ha</td>
<td>200</td>
<td>Tebukonazol (250 g/l) + protiokonazol (125 g/l)</td>
<td>Prosaro</td>
</tr>
<tr>
<td>Sofru</td>
<td>08.05.2017.</td>
<td>1 l/ha</td>
<td>200</td>
<td>Tebukonazol, (250 g/l) + protiokonazol, (125 g/l)</td>
<td>Prosaro</td>
</tr>
</tbody>
</table>

Prilikom izrade procjene prinosa na tablama na kojima je praćena proizvodnja pšenice i ječma, početkom mjeseca lipnja na ječmu nije zamijećena pojava bolesti klasa dok su na pšenici u tragovima utvrđeni simptomi zaraze sa *S. nodorum* (slika 27.) i *Fusarium* spp. (slika 28.)
Slika 27. *S. nodorum* na zrnu sorte Sofru (izvor: Kalac B., 2017.)

Slika 28. *Fusarium spp.* na vršnom klasiću na sorti Sofru
(izvor: Kalac B., 2017.)
Žetva ječma (slika 29.) počela je 8. lipnja pri prosječnoj vlazi zrna 13,5 %. Žetva pšenice počela je 2. srpnja. U tablici 9 prikazani su prinosi i parametri kvalitete praćenih sorti pšenice i ječma.

Tablica 9. Prinos i parametri kvalitete praćenih sorti

<table>
<thead>
<tr>
<th>Sorta</th>
<th>Datum</th>
<th>Prinos t/ha</th>
<th>Vlaga</th>
<th>Hektolitar</th>
<th>Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barun</td>
<td>09.06.2017.</td>
<td>7.96</td>
<td>13,3 %</td>
<td>68,6</td>
<td>10,2</td>
</tr>
<tr>
<td>Maxim</td>
<td>12.06.2017.</td>
<td>8,64</td>
<td>13,1 %</td>
<td>69,3</td>
<td>11,1</td>
</tr>
<tr>
<td>Bologna</td>
<td>02.07.2017.</td>
<td>9,40</td>
<td>12,9 %</td>
<td>84,4</td>
<td>14,4</td>
</tr>
<tr>
<td>Sofru</td>
<td>02.07.2017.</td>
<td>10,33</td>
<td>12,5 %</td>
<td>80,2</td>
<td>11,1</td>
</tr>
</tbody>
</table>

Slika 29. Žetva ječma (izvor: Kalac B., 2017.)
5. RASPRAVA

Tijekom provedenih istraživanja na usjevima pšenice i ječma praćena je pojava bolesti te se na temelju stanja na terenu i meteoroloških podataka obavila zaštitu istih u skladu s načelima dobre poljoprivredne prakse i načelima integrirane zaštite bilja. Vrijeme primjene sredstava za zaštitu bilja protiv biljnih bolesti određeno je temeljem poznavanja ekologije, morfologije i biologije patogena. Praćenjem pojave prvih simptoma i vrijednosti meteoroloških čimbenika utvrđeni su rokovi primjene fungicida.

Početak mjeseca ožujka je donio temperature pogodne za razvoj lisnih bolesti ječma. Srednje dnevne temperature su se kretale između 10 i 15 °C što omogućuje infekciju ječma gljivom P. teres forma maculans i P. teres (Jurković i sur., 2016.). Najavom porasta temperature mogućnost zaraze bila je veća, a time i rizik od nastanka šteta na usjevu. Rani rokovi sjetve početkom listopada kao i izbor domaćeg sortimenta koji je nešto manje tolerantan na ove uzročnike bolesti rezultiraju pojačanom potrebom za praćenjem pojave i razvoja lisnih bolesti (Korić, 2008.).

P. tritici repentin je bolest koja najčešće napada pšenicu. Početkom travnja na usjevima pšenice pojavili su se simptomi ove bolesti opisani kao nekrotične pjege okružene klorotičnim zonom (Ciuffetti i sur. 1999.). Na sorti Bologna, koja je nešto osjetljivija na napad ovog patogena u odnosu na sortu Sofru, pojavili su se simptomi žutosmeđe pjegavosti, dok su na sorti Sofru samo sporadično pronađene klorotične pjege bez nekrotiziranog centralnog dijela što ukazuje na razlike u simptomima kod osjetljivih i tolerantnih sorata (Jurković i sur., 2016.).

Makrokonidije Fusarium graminearum klijaju u širokom temperaturnom opsegu, između 16 i 36 °C. Optimalne temperature su između 28 i 30 °C (Doohan i sur., 2003.). Temperature koje odgovaraju razvoju askospora su 29 °C (Gilbert i Tekauz, 2000.). U drugoj dekadi mjeseca svibnja zabilježene su oborine uz prosječne dnevne temperature veće od 20 °C što je pogodovalo
razvoju uzročnika paleži klasa na pšenici. Kasnijim pregledima u tragovima su se mogli pronaći simptomi navedene bolesti što potvrđuje da je tretman u zaštitu klasa na pšenici neizostavan u ozbiljnoj proizvodnji.
6. ZAKLJUČAK

Prilikom pregleda polja na Vupik d.d. na kojima su zasijane pšenica i ječam tijekom 2017. godine
pronđeni su simptomi sljedećih uzročnika bolesti:

- **Pyrenophora teres** Drechsler
- **Pseudocercosporella herpotrichoides** (Fron) Deighton
- **Fusarium graminearum** Schwabe
- **Septoria tritici** Rob. Et Desm.
- **Pyrenophora tritici-repentis** (Died.) Drechsler.
- **Septoria nodorum** Berk.

Uzročnici koji su se pojavili u jačem intenzitetu su **P. teres** na ječmu te **P. tritici-repentis** na
pšenici. Praćenjem njihove pojače određeni su rokovi zaštite fungicidima. Provodenje zaštite
izvršeno je u skladu s propisanim dozama i vremenom primjene.
7. LITERATURA

8. SAŽETAK

9. SUMMARY

The main goal of this thesis was to track the ways in which diseases appeared on the wheat and barley crops of Vupik d.d. and to define the adequate protection measures. The wheat and barley crop fields were located in the area around Bobota, while their size in total was 47 ha. In a microscopic analysis, the following causes of disease were found: *Pyrenophora teres* Drechsler, *Fusarium graminearum* Schwabe, *Septoria tritici* Rob. Et Desm., *Pyrenophora tritici-repentis* (Died.) Drechsler and *Septoria nodorum* Berk. The application of fungicides was performed three times on wheat and twice on barley.
10. POPIS SLIKA

<table>
<thead>
<tr>
<th>Broj</th>
<th>Naziv slike</th>
<th>Stranica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slika 1</td>
<td>Slika 1. Omjer proizvodnje žitarica u odnosu na druge biljne vrste, (izvor: http://ec.europa.eu)</td>
<td>1</td>
</tr>
<tr>
<td>Slika 2</td>
<td>Pšenica u cvatnji, (izvor: Kalac B., 2017.)</td>
<td>3</td>
</tr>
<tr>
<td>Slika 3</td>
<td>Mrežasta pjegavost lista ječma, (izvor: Kalac B., 2017.)</td>
<td>5</td>
</tr>
<tr>
<td>Slika 4</td>
<td>Smeđa pjegavost lista pšenice, (izvor: Kalac B., 2017.)</td>
<td>6</td>
</tr>
<tr>
<td>Slika 5</td>
<td>Osušeni vrh lista pšenice uzrokovan smeđom pjegavosti, (izvor: Kalac B., 2017.)</td>
<td>7</td>
</tr>
<tr>
<td>Slika 6</td>
<td>Jesenske zaraze na donjem lišću, (izvor: Kalac B., 2017.)</td>
<td>7</td>
</tr>
<tr>
<td>Slika 7</td>
<td>Nakupine uredosorusa na listu pšenice, (izvor: http://www.pflanzenkrankheiten.ch)</td>
<td>9</td>
</tr>
<tr>
<td>Slika 8</td>
<td>Simptomi žute hrđe na pljevicama, (izvor: Kalac B., 2017.)</td>
<td>9</td>
</tr>
<tr>
<td>Slika 9</td>
<td>List pšenice zaražen B. graminis, (izvor: Kalac B., 2017.)</td>
<td>11</td>
</tr>
<tr>
<td>Slika 10</td>
<td>P. tritici-repentis na tolerantnijoj sorti Sofru, (izvor: Kalac B., 2017.)</td>
<td>12</td>
</tr>
<tr>
<td>Slika 11</td>
<td>P. tritici-repentis na osjetljivijoj sorti Bologna, (izvor: Kalac B., 2017.)</td>
<td>13</td>
</tr>
<tr>
<td>Slika 13</td>
<td>Uzročnik patološkog polijeganja na ječmu, (izvor: Kalac B., 2017.)</td>
<td>16</td>
</tr>
<tr>
<td>Slika 14</td>
<td>O. yallundae na vlati ječma, (izvor: Kalac B., 2017.)</td>
<td>17</td>
</tr>
<tr>
<td>Slika 15</td>
<td>P. Teres na ječmu u busanju, (izvor: Kalac B., 2017.)</td>
<td>18</td>
</tr>
<tr>
<td>Slika 16</td>
<td>P. teres na sorti ječma Maxim, (izvor: Kalac B., 2017.)</td>
<td>19</td>
</tr>
<tr>
<td>Slika 17</td>
<td>Sijačica Horsch Pronto, (izvor: Kalac B., 2017.)</td>
<td>21</td>
</tr>
<tr>
<td>Slika 18</td>
<td>Prskalice Hardi commander, (izvor: Kalac B., 2017.)</td>
<td>21</td>
</tr>
<tr>
<td>Slika 19</td>
<td>Dijagram temperature, vlage zraka i oborina od 13. do 20. ožujka na lokaciji Bobota, (izvor: Kalac B., 2017.)</td>
<td>22</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>Slika 20</td>
<td>P. teres na sorti Barun, (izvor: Kalac B., 2017.)</td>
<td>23</td>
</tr>
<tr>
<td>Slika 21</td>
<td>Oštećenje na listu ječma uzrokovano P. teres uočeno pod mikroskopom, (izvor: Kalac B., 2017.)</td>
<td>24</td>
</tr>
<tr>
<td>Slika 22</td>
<td>Dijagram temperature, vlage zraka i oborina od 27. ožujka do 2. travnja na lokaciji Bobota, (izvor: Kalac B., 2017.)</td>
<td>24</td>
</tr>
<tr>
<td>Slika 23</td>
<td>Oštećenja od mraza na listu pšenice, (izvor: Kalac B., 2017.)</td>
<td>25</td>
</tr>
<tr>
<td>Slika 24</td>
<td>P. tritici-repentis na sorti Bologna, (izvor: Kalac B., 2017.)</td>
<td>25</td>
</tr>
<tr>
<td>Slika 25</td>
<td>P. teres forma maculans na sorti Barun, (izvor: Kalac B., 2017.)</td>
<td>27</td>
</tr>
<tr>
<td>Slika 26</td>
<td>Dijagram temperature, vlage zraka i oborina u periodu od 19. travnja do 25. travnja na lokaciji Bobota, (izvor: Kalac B., 2017.)</td>
<td>27</td>
</tr>
<tr>
<td>Slika 27</td>
<td>S. nodorum na zrnu sorte Sofru, (izvor: Kalac B., 2017.)</td>
<td>29</td>
</tr>
<tr>
<td>Slika 28</td>
<td>Fusarium spp. na vršnom klasiću na sorti Sofru, (izvor: Kalac B., 2017.)</td>
<td>29</td>
</tr>
<tr>
<td>Slika 29</td>
<td>Žetva ječma, (izvor: Kalac B., 2017.)</td>
<td>30</td>
</tr>
</tbody>
</table>
11. POPIS TABLICA

<table>
<thead>
<tr>
<th>Broj</th>
<th>Naziv tablice</th>
<th>Stranica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tablica 1</td>
<td>Površine, prinosi i proizvodnja najvažnijih žitarica u Hrvatskoj (2007)</td>
<td>2</td>
</tr>
<tr>
<td>Tablica 2</td>
<td>Sjetva i sorte po tablama</td>
<td>20</td>
</tr>
<tr>
<td>Tablica 3</td>
<td>Gnojidba pšenice i ječma</td>
<td>20</td>
</tr>
<tr>
<td>Tablica 4</td>
<td>Prvi tretman fungicidom na ječmu</td>
<td>23</td>
</tr>
<tr>
<td>Tablica 5</td>
<td>Prvi tretman fungicidom na pšenici</td>
<td>26</td>
</tr>
<tr>
<td>Tablica 6</td>
<td>Drugi tretman fungicidom na ječmu</td>
<td>26</td>
</tr>
<tr>
<td>Tablica 7</td>
<td>Drugi tretman fungicidom na pšenici</td>
<td>28</td>
</tr>
<tr>
<td>Tablica 8</td>
<td>Treći tretman fungicidom na pšenici</td>
<td>28</td>
</tr>
<tr>
<td>Tablica 9</td>
<td>Prinos i parametri kvalitete praćenih sorti</td>
<td>30</td>
</tr>
</tbody>
</table>
Diplomski rad
Bilinogojstvo, Zaštita bilja
Bolesti i zaštita ječma i pšenice na Vupik d.d.

Bernard Kalac

Sažetak:

Rad je izrađen pri: Poljoprivredni fakultet u Osijeku
Mentor: prof. dr. sc. Jasenka Ćosić

Broj stranica: 46
Broj slika: 29
Broj tablica: 9
Broj literaturnih navoda: 34
Jezik izvornika: hrvatski

Ključne riječi: pšenica, ječam, bolesti, fungicid

Datum obrane:

Stručno povjerenstvo za obranu:
1. Prof. dr. sc. Karolina Vrandečić, predsjednik
2. Prof. dr. sc. Jasenka Ćosić, mentor
3. Doc. dr. sc. Jelena Ilić, član

Rad je pohranjen: Knjižnica Poljoprivrednog fakulteta u Osijeku, Vladimira Preloga 1.
Abstract:

The main goal of this thesis was to track the ways in which diseases appeared on the wheat and barley crops of Vupik d.d. and to define the adequate protection measures. The wheat and barley crop fields were located in the area around Bobota, while their size in total was 47 ha. In a microscopic analysis, the following causes of disease were found: *Pyrenophora teres* Drechsler, *Fusarium graminearum* Schwabe, *Septoria tritici* Rob. Et Desm., *Pyrenophora tritici-repentis* (Died.) Drechsler and *Septoria nodorum* Berk. The application of fungicides was performed three times on wheat and twice on barley.

Thesis performed at: Faculty of Agriculture in Osijek

Mentor: prof. Jasenka Ćosić, Ph. D.

Number of pages: 46
Number of pictures: 29
Number of tables: 9
Number of references: 34
Original in: Croatian

Key words: wheat, barley, diseases, fungicide

Date of thesis defence:

Reviewers:

1. prof., Karolina Vrandečić, Ph. D., president
2. prof. Jasenka Ćosić, Ph. D., mentor
3. prof. Jelena Ilić, Ph. D., member

Thesis deposited: Library, Faculty of Agriculture, University of Josip Juraj Strossmayer of Osijek, Vladimira Preloga 1.