UTJECAJ STANJA NEGATIVNE ENERGETSKE RAVNOTEŽE KRAVA NA PROIZVODNJU MLIJeka

Katinić, Petar

Master's thesis / Diplomski rad

2015

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: Josip Juraj Strossmayer University of Osijek, Faculty of agriculture / Sveučilište Josipa Jurja Strossmayera u Osijeku, Poljoprivredni fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:151:534175

Rights / Prava: In copyright

Download date / Datum preuzimanja: 2020-10-16

Repository / Repozitorij:

Repository of the Faculty of Agrobiotechnical Sciences Osijek - Repository of the Faculty of Agrobiotechnical Sciences Osijek

zir.nsk.hr

dabar
Petar Katinić, apsolvent
Diplomski studij Zootehnika, smjer Specijalna zootehnika

UTJECAJ STANJA NEGATIVNE ENERGETSKE RAVNOTEŽE KRAVA NA PROIZVODNJU MLIJEKA

Diplomski rad

Osijek, 2015.
Petar Katinić, apsolvent
Diplomski studij Zootehnika, smjer Specijalna zootehnika

UTJECAJ STANJA NEGATIVNE ENERGETSKE RAVNOTEŽE KRAVA NA PROIZVODNJU MLIJEKA

Diplomski rad

Osijek, 2015.
UTJECAJ STANJA NEGATIVNE ENERGETSKE RAVNOTEŽE KRAVA NA PROIZVODNJU MLJEKA

Diplomski rad

Povjerenstvo za obranu diplomskog rada:
1. prof.dr.sc. Pero Mijić, predsjednik
2. prof.dr.sc. Marcela Šperanda, mentor
3. doc.dr.sc. Mislav Đidara, član

Osijek, 2015.
Sadržaj

1. UVOD .......................................................................................................................... 1

2. PREGLED LITERATURE ............................................................................................ 2

   2.1. Negativni energetski balans .................................................................................. 2

   2.2. Laktacija .................................................................................................................. 4

   2.3. Metaboličke promjene u laktaciji .......................................................................... 6

   2.4. Metabolizam lipida .................................................................................................. 7

   2.5. Metabolizam ugljikohidrata .................................................................................... 11

   2.6. Karkteristike prijelaznog razdoblja u mliječnih krava ........................................... 14

   2.7. Biokemijski pokazatelji energetskog statusa krava .............................................. 17

   2.8. Energetika mliječnosti ............................................................................................ 19

   2.9. Rizični faktori koji dovode do NEB-a i ketoze ...................................................... 20

   2.10. Ketoza ..................................................................................................................... 22

      2.10.1. Ketogeneza ....................................................................................................... 26

      2.10.2. Patogeneza laktacijske ketoze u krava ............................................................. 28

      2.10.3. Učestalost pojave ketoze .................................................................................... 29

      2.10.4. Diagnostika ketoze ............................................................................................ 30

      2.10.5. Negativni utjecaji ketoze ................................................................................... 36

      2.10.6. Terapija ketoze .................................................................................................. 40

      2.10.7. Profilaksa ketoze ............................................................................................... 43

3. MATRIJALI I METODE ................................................................................................. 44

4. REZULTATI I RASPRAVA ........................................................................................... 45

5. LITERATURA .................................................................................................................. 49

6. ZAKLJUČAK ..................................................................................................................... 52

7. SAŽETAK ........................................................................................................................ 53

8. SUMMARY ......................................................................................................................... 54

9. POPIS TABLICA .............................................................................................................. 55

10. POPIS SLIKA .................................................................................................................. 56

    TEMELJNA DOKUMENTaciJSKA KARTICA ................................................................. 57

    BASIC DOCUMENTATION CARD ................................................................................ 58
1. UVOD

Intenzivan razvoj poljoprivrede i napredak u selekciji životinja s obzirom na proizvodne osobine sa sobom je donio i niz novih poremećaja zdravlja domaćih životinja. Visoka proizvodnja, posebno proizvodnja mlijeka stavlja pred organizam životinje velike zahtjeve i dovodi do velikog opterećenja bioloških i fizioloških mehanizama, što često ima za posljedicu poremećaje zdravlja. Imajući u vidu da preživači pretvaraju hranu niske biološke vrijednosti (biljna krmiva bogata celulozom) u hranu visoke biološke vrijednosti (mlijeko i meso), nameće se zaključak da najveće opterećenje trpe organi koji su najviše uključeni u promet tvari i energije te sintezu mlijeka (jetra, mliječna žlijezda, reproduktivni organi). Laktacija i graviditet predstavljaju stanja organizma kod kojih postoji stalni sukob homeostatskih i homeoretskih mehanizama. Genetska predispozicija grla visokomliječnih pasmina za visoku proizvodnju mlijeka nameće metabolički prioritet razvoja ploda, odnosno sinteze i sekrecije mlijeka, kontroliran primarno homeoretskim mehanizmima. Zbog dominacije homeoretskih mehanizama nad homeostatskim, kod visokomliječnih krava česti su poremećaji zdravlja, najčešće oni metaboličke prirode. To se naročito odnosi na poremećaje energetskog i mineralnog metabolizma. Upravo u takvim uvjetima nastaje negativni energetski balans ili NEB. Imajući u vidu da životinje hranjive tvari i minerale unoše hrano, da se zaključiti da je jedan od osnovnih faktora koji utječe na pojavu, učestalost i intenzitet metaboličkih poremećaja visokomliječnih krava upravo hranidba. Zbog toga se svi istraživači slažu da u osnovi poremećaja metabolizma (kako mineralnog, tako i energetskog) leži neadekvatna hranidba. Kao posljedica grešaka u hranidbi pojavljuje se niz poremećaja, koji čine preko 50% svih poremećaja u visokomliječnim krava. Svakako, treba imati na umu da su ovi poremećaji povezani i s ostalim čimbenicima, mada to često na prvi pogled ne izgleda tako. Osim hranidbe, postoje i drugi rizični faktori koji dovode do ovih stanja, a to su smještaj i njega životinja, zdravstveno stanje, pasmina, spol, dob i mnogi drugi čimbenici. Brojna su istraživanja ukazala na jasnu povezanost negativnog energetskog balansa (NEB-a) i niza drugih poremećaja zdravlja poput, puerperalnog zatajenja jetre, zamašćenja jetre, ketoze, dislokacije sirišta, indigestije, poremećaja reprodukcije, smanjenja proizvodnih sposobnosti, povećanja postotka izlučenih grla i prisilnih klanja, kao i uginuća. Smatra se da od NEB-a i bolesti vezanih za negativan energetski balans farme visokomliječnih goveda gube od 200 do 300 E po kravi godišnje, te je lako zaključiti da je NEB-a i vrlo velik ekonomski problem u govedarstvu.
2. PREGLED LITERATURE

2.1. Negativni energetski balans

Energetski balans predstavlja razliku u energiji koja je konzumirana i koja je utrošena u proizvodnji određenih proizvoda, poput mlijeka i mesa. Vrlo često u proizvodnom ciklusu krava dolazi do podizanja energetske razine, kada krava unosi previše energije putem hrane ili pada energetske razine, kada krava ne može zadovoljiti svoje potrebe za energijom. Jedan od najkritičnijih perioda je postpartalni period i prijelazno razdoblje kada drastično dolazi do povećanja potrebe goveda za energijom (Lance i sur., 2006).

Unos hrane u postpartalnom i prijelaznom periodu ima najveći utjecaj na sposobnost mliječnog goveda da se prilagodi i umanji učinak negativnog energetskog balansa. Kada se glavni glikogenoplastični elementi i ostale komponente hranjivih tvari unosu putem probave u pravilnom omjeru i količini, katabolički i anabolički procesi se odvijaju sukladno homeostatskim načelima te je energetski status krave u ravnoteži. U uvjetima negativnog energetskog balansa zbog intenziviranja procesa lipomobilizacije, pri raspoloživoj, ali nedovoljnoj količini glikogenoplastičnih tvari, novonastali odnosi u intermediarnom metabolizmu ima za posljedicu nakupljanje ostataka sa dva C-ataoma (acetil-CoA) i posljedično tome, intenziviranje procesa ketogeneze. Deficit energije u prva dva mjeseca laktacije može biti jednak količini energije koju ima 50 kg tjelesne masti te se može pretpostaviti da rezerve energije smještene u depoima masti trebaju biti što veće u početku laktacije. Međutim, utvrđeno je da kod krava koje nagomilaju veće rezerve u posljednjoj fazi laktacije i tokom perioda zasušenja, proces lipomobilizacije započinje ranije i odvija se brzo i nekontroliрано. To potvrđuje hipotezu da stupanj lipomobilizacije u najvećoj mjeri ovisi o deponiranoj masti.

Ukoliko se u zadnjoj fazi laktacije i suhostaju javi pozitivni energetski balans te on potraje puno duže nego je potrebno, može doći do nakupljene količine tjelesne masti koje znaju biti izuzetno velike, sve do patoloških razmjeđa. Zbog toga se u početkom laktacije mobiliziraju količine masti u mnogo većem stupnju nego što su stvarne potrebe organizma pri negativnim energetskom balansu. Krave koje su pretile u zasušenju imaju značajno manji apetit nego krave normalne tjelesne kondicije i zato je kod njih NEB produbljeniji, a lipomobilizacija intenzivnija (Sladojević, 2012).
2.2. Laktacija

Laktacija je proces sinteze i izlučivanja mlijeka kojoj je uloga kod sisavaca prehrana mladunčadi. Javlja se par dana prije poroda što opet ovisi o vrsti, a povezana je s hormonskim promjenama koje se događaju u organizmu sisavca, to jest, padom koncentracije progesterona, a porastom prolaktina. Gledano na odnos majke i mladunčeta, laktacija je svojevrsni nastavak razdoblja razvoja tijekom kojeg je mladunče i dalje ovisno o organizmu majke (Filipović i sur., 2007). Standardno laktacija kod krava traje 305 dana i očituje se laktacijskom krivuljom. Ona predstavlja količinu proizvodnje mlijeka tijekom cijelog procesa laktacije (Domaćinović i sur., 2010).

Slika 1. Laktacijska krivulja

Izvor: [http://www.schaumann.hr/cps/schaumann-hr/ds_img/hrv/Darst_520px_pp_transitphase_hr_110822.jpg](http://www.schaumann.hr/cps/schaumann-hr/ds_img/hrv/Darst_520px_pp_transitphase_hr_110822.jpg)
2.3. Metaboličke promjene u laktaciji

McGuire i sur. (2004) navode kako zbog naglog povećanja potreba za proizvodnjom mlijeka, prilagodba metabolizma mora biti brza, a u slučaju nemogućnosti prilagodbe, dolazi do pojave metaboličkih poremećaja. Metaboličke prilagodbe na laktaciju podrazumijevaju povećani unos hrane i vode, povećanje kapaciteta probavnog sustava s povećanom sposobnošću resorpcije hranjivih tvari, povećani opseg lipolize i smanjeni opseg lipogeneze, povećani opseg glukoneogeneze i glikogenolize, utilizaciju acetata za energetske potrebe, mobilizaciju tjelesnih bjelančevina, povećani opseg resorpcije minerala i mobilizaciju njihovih rezervi te povećani opseg resorpcije vode i povećanje volumena plazme.

Znatna količina glukoze koja se iskorišta u mliječnoj žlijezdi za potrebe sinteze laktoze, smanjuje ionako nisku razinu glukoze u krvi. Glukoza u krvi preživača, za razliku od nepreživača, prvenstveno ovisi o glukoneogenezi. Fermentacija u predželudcima goveda prevodi ugljikohidrate unesene hranom u niže masne kiseline (NMK), te je to razlog zašto se sasvim mali dio glukoze resorbira u krvotok kroz sluznicu predželudaca ili crijeva (Lucy, 2015). Upravo zbog toga razina glukoze u krvi preživača znatno je niža nego u nepreživača (2.50 - 4.16 mmol/L kod krave, prema 4.16 - 6.39 mmol/L kod konja), dok Forenbacher (1993) navodi da su koncentracije glukoze kod zdravih krava 4,5 mmol/L, a kod ketotičnih krava 2,5 mmol/L..

Smanjenje razine glukoze u serumu dovodi do pada koncentracije inzulina te porasta koncentracije glukagona, s posljedičnim povećanjem lipolize i β oksidacije masnih kiselina iz kojih nastaje velika količina acetil-CoA. Nastali acetil-CoA ulazi u ciklus limunske kiseline, ali samo u količini koja je ovisna o raspoloživosti oksalacetata (OA), a koji ovisi o količini glukoze. Preostali acetil-CoA skreće u ketogenezu, što je osnova za stvaranje ketonskih tijela. Osobitost metabolizma preživača je i niža koncentracija OA u mitohondrijima, što također pridonosi nastanku ketonskih tijela. Ključni enzim ketogeneze – mitohondrijska hidroksimetilglutaril koenzim A sintaza (HMG CoA-sintaza) gotovo je isključivo ograničen na mitohondrije jetre. Količina HMG CoA-sintaze povećava se pod utjecajem cikličnog adenosin monofosfata, glukokortikoida, tijekom gladovanja i dijabetesa, a smanjuje ju inzulin i ponovno hranjenje. Određene količine βHBA sintetiziraju se i u stjenci predželudaca iz maslačne kiseline. Kao posljedica povećanog opsega lipolize u krvi raste koncentracija slobodnih masnih kiselina. SMK (slobodne masne kiseline) iz krvi koristi većina tkiva, u najvećoj mjeri jetra, skeletni i srčani mišići. Ova tkiva SMK koriste za dobivanje energije putem beta-oksidacije u mitohondrijima. Povećana koncentracija SMK u plazmi može...
pridonijeti negativnoj energetskoj ravnoveži, budući da se u mliječnih krava dovodi u vezu sa smanjenim unosom hrane. U jetri se iz SMK sintetiziraju trigliceridi te se oslobađaju u krvotok kao sastavni dio VLDL-a. Preživači imaju ograničenu sposobnost otpuštanja VLDL-a u krvotok, pa se u suvišku SMK sintetizira velika količina triglicerida u jetri, koja se ne može u potpunosti izlučiti u krvotok. Posljedica ovog stanja je nakupljanje triglicerida u stanicamajetre te nastanak zamašćenja jetre. Ta je pojava u većem ili manjem stupnju prisutna u mliječnih krava prije poroda i u početku laktacije (Filipović, 2007).

2.4. Metabolizam lipida

Lipidi su svojom gradom prilično raznolika skupina spojeva. Zajedničko im je svojstvo da su netopivi u vodi, a topivi su u organskim otapalima. U vodenoj sredini tvore koloidne ili micelarne otopine. Dijelimo ih u pet skupina a to su masne kiseline, esteri glicerola, sfingolipidi, derivati sterola i terpeni. Za metabolizam najvažniju ulogu igraju acil-gliceroli koji su esteri masnih kiselina i alkohola glicerola. Glicerol je trovalentni alkohol što znači da može tvoriti monoestere, diestre i triestere koje onda nazivamo monoacilglicerolima, diacilglicerolima i triacilglicerolima (Carlson, 1988). U prirodnim mastima nazočne su uglavnom masne kiseline s parnim brojem ugljikovih atoma. Tako ih ima najviše sa 16 i 18 ugljikovih atoma. Razlikujemo zasićene (SFA) i nezasićene masne kiseline. Od zasićenih masnih kiselina prevladavaju palmitinska (C16) i stearinska masna kiselina (C18), a od nezasićenih imamo mononezasićene masne kiseline (MUFA) kao što je oleinska kiselina s jednom dvostrukom vezom, te polinezasićene masne kiseline poput linolne s dvije i linolenske s tri dvostruke veze. Lipidi zaslužni za energiju u organizmu dolaze u obliku triacilglicerola ili triglicerida, a deponiraju se u obliku masnih stanica u adipoznom ili masnom tkivu (Lutkić i Jurić, 2008).

Trigliceridi su glavni skladišni oblik metaboličke energije, a za to su izabrani jer su reducirani, jer su bezvodni i u vodenim otopinama se gušće pakiraju. Razgradnjom triglicerida dobivamo slobodne masne kiseline koje predstavljaju najveći izvor energije u organizmu i alkohol glicerol koji se u jetri koristi za sintezu glukoze glukoneogenezom, dobivanje energije glikolizom i sintezu triglicerida u jetri. Probava triglicerida odvija se u dvanaesniku ili duodenumu. Trigliceridi se miješaju sa žučnim solima izlučenim iz žučne vrećice i potom emulgiraju. Nakon toga, djelovanjem lipaze, trigliceridi se razgrađuju na
monoacilglicerol i slobodne masne kiseline. Monoacilglicerol i masne kiseline potomapsorbiraju stanice tankog crijeva ili enterociti, te u njima ponovno nastaju trigliceridi. U epitelnim stanicama tankog crijeva trigliceridi se kombiniraju sa fosfolipidima, kolesterolom i proteinima za transport lipida, to jest, lipoproteinima u hilomikrone koje epitelne stanice egzocitozom izbacuju u limfu. Hilomikroni iz limfe potom dospijevaju u krv, a krvlju se prenose do stanica adipoznog tkiva i jetre. Ovisno o energetskom statusu organizma i razini glukoze u krvi, masne kiseline se oslobađaju djelovanjem lipoprotein-lipaze i koriste za sintezu lipida (lipogenezu) ili oksidaciju masnih kiseline za dobivanje energije. Kada su energetske rezerve organizma niske (gladovanje, intenzivno vježbanje, stres), odnosno kada je razina glukoze u krvi niska, trigliceridi pohranjeni u adipoznim stanicama se razgrađuju na glicerol i masne kiseline. Masne kiseline se odašilju u krv kako bi drugim organima poslužili za energiju, a glicerol služi u glukoneogenezi. Prilikom gladovanja, većih fizičkih napora ili bolesti masni depoi su izvor energije koji se javlja u obliku masnih kiseline (Stryer i sur., 2013).

membrani (u matriks). Kada je aktivirana masna kiselina (acil-CoA) unesena u matriks mitohondrija, podliježe oksidaciji (β-oksidaciji) pri čemu se s karbonilnog kraja masne kiseline stupnjevito uklanjaju dva po dva ugljikovih atoma u obliku acetil-CoA. Oksidacija masnih kiseline odvija se u četiri reakcije:

✓ Prva reakcija je oksidacija (dehidrogenacija) acil-CoA. Ovu reakciju vrši acil-CoA-dehidrogenaza koja uklanja po jedan vodikov atom s α- i β-ugljikovog atoma acil-CoA i prenosi ih na FAD pri čemu se FAD reducira u FADH₂, te nastaje enoil-CoA sa trans dvostrukom vezom između α- i β-ugljikovog atoma.

✓ Druga reakcija je hidracija enoil-CoA. Dvostrukom vezom enoil-CoA hidrira se pomoću enzima enoil-CoA-hidrataze pri čemu nastaje 3-hidroksiacil-CoA.

✓ Treća reakcija je oksidacija 3-hidroksilne skupine. Hidroksilna skupina na β-C-atomu (C3-atomu) oksidira se u keto skupinu djelovanjem 3-hidroksiacil-CoA-dehidrogenaze uz istovremenu redukciju NAD⁺ u NADH, te nastaje 3-ketoacil-CoA.

✓ Četvrta reakcija je cijepanje 3-ketoacil-CoA. Nakon što je β-C-atom preveden u novu karbonilnu skupinu slijedi posljednji korak, a to je cijepanje 3-ketoacil-CoA pomoću tiolne (SH) skupine druge molekule CoA. Tu reakciju katalizira enzima β-ketotiolaza pri čemu se oslobađa acetil-CoA i molekula acil-CoA skraćena za dva C-atoma.

Skraćena molekula acil-CoA sada prolazi kroz slijedeći krug β-oksidacije pri čemu nastaje još jedna molekula acetil-CoA i molekula acil-CoA skraćena za još 2 C-atoma. Postupak oksidacije se nastavlja dok se sva molekula ne razgradi. Nestale molekule acetil-CoA ulaze u ciklus limunske kiseline, gdje se potpuno oksidiraju do CO₂, a reducirani koenzimi nastali u oksidaciji masnih kiseline (1 FADH₂ i 1 NADH po 1 krugu β-oksidacije) i u ciklusu limunske kiseline (3 NADH i 1 FADH₂ po 1 molekuli acetil-CoA) odlaze u lanac prijenosa elektrona gdje se oksidiraju. Energija koja nastaje u lancu prijenosa elektrona koristi se za stvaranje gradijenta protona koji služi za sintezu ATP-a (Lutkić i Jurić, 2008).

Kada je energetski status stanice visok (prehrana bogata ugljikohidratima; stanica bogata energijom – ima puno ATP), u stanicama jetre (hepatociti sintetiziraju glavinu masnih kiseline u organizmu) se acetil-CoA, nastao razgradnjom glukoze, usmjerava ka sintezi masnih kiseline, koja se odvija u citoplazmi. Ključni enzim za sintezu masnih kiseline je acetil-CoA-karboksilaza. Ovaj enzim vrši karboksilaciju acetil-CoA (dodavanje karboksilne skupine na acetil-CoA) uz utrošak ATP-a pri čemu nastaje malonil-CoA. Malonil-CoA je aktivirani oblik acetil-CoA koji se koristi u sintezi masnih kiseline. Za sintezu malonil-CoA u

2.5. Metabolizam ugljikohidrata

Ugljikohidrati su najzastupljenije biomolekule u prirodi, a predstavljaju direktnu vezu između sunčeve energije i energije kemijskih veza živih organizama. Više od polovice ukupnih “organskih” ugljika nalazi se u ugljikohidratima. Ugljikohidrati nastaju u procesu fotosinteze, biokemijskom procesu u kojem se svjetlosna (sunčeva) energija prikuplja i pretvara u kemijsku energiju u obliku reduciranog koenzima NADPH i energetske valute stanice ATP, koji se potom koriste za biosintezu energijom bogatih organskih molekula (ugljikohidrata), iz energetski siromašnih anorganskih molekula – CO₂ i vode. Prema Karlsonu (1988) ugljikohidrate dijelimo na jednostavne ili monosaharide, te složene šećere, koji su građeni od dvije ili više monosaharidnih jedinica. Tu ubrajamo oligosaharide koji sadrže od 2 do 10 jedinica i polisaharide koji imaju više od 10 monosaharidnih jedinica (Stryer i sur., 2013). U životinja se višak glukoze posprema u skladišni oblik ugljikohidrata – glikogen, biosintetskim putem glikogenezom. Kada je glukoza potrebna kao izvor energije ili za biosinteze drugih molekula, glikogen se razgrađuje glikogenolizom. U nekim se stanicama glukoza razgrađuje u putu pentoza fosfata do riboza-5-fosfata pri čemu nastaje i NADPH to se te molekule koriste u biosintezi različitih molekula u organizmu (Lutkić i Jurić, 2008).

Kao i ostale hranjive tvari (masti i proteini) i ugljikohidrati se razgrađuju u organizmu u tri koraka. Proces razgradnje ugljikohidrata počinje u probavi gdje se oni razgrađuju do monosaharida ili jedostavnih šećera. Nakon toga slijedi druga faza, gdje se kataboliziraju do acetil-CoA, a to je glavna intermedijarna molekula. U trećoj fazi koja je najbitnija iz energetskog aspekta, u Krebsovom ciklusu i oksidativnoj fosforilaciji, acetil-CoA se oksidira do ugljikova dioksida i vode. Pri ovoj zadnjoj fazi razgradnje stvara se i najveća količina energije, koja se skladišti u obliku ATP-a (Karlson, 1988).

glukoze. Glikoliza predstavlja predigru za Krebsov ciklus i lanac prijenosa elektrona koji zapravo iscrpe najveći dio energije pohranjen u glukozi. U nedostatku kisika, piruvat se prevodi u laktat koji se opet u jetri životinje može iskoristiti za dobivanje glukoze. Kada je dovoljno kisika prisutno u stanici, piruvat se razgrađuje do acetil-CoA.

U ciklusu limunske kiseline ili Krebsovom ciklusu, acetil-CoA se oksidira do ugljičnog dioksida i vode, a energija oksidacije pohranjena u reduciranim koenzimima (NADH i FADH2) koristi se za prijenos elektrona i oksidacijsku fosforilaciju u kojoj nastaje ATP. Ciklus limunske kiseline je krajnji opći metabolički put oksidacije molekula hrane, a odvija se u matriksu mitohondrija. Piruvat se u matriksu mitohondrija djelovanjem enzima piruvat-dehidrogenaze dekarboksilira i oksidira, a nastala acetilna jedinica spaja se tioesterskom vezom na sulfhidrilnu skupinu koenzima A (CoA) pri čemu nastaje acetil-CoA i jedna molekula NADH. Acetil-CoA ulazi u ciklus limunske kiseline kondenzirajući se s oksaloacetatom u citrat. Nastali citrat prolazi kroz još devet reakcija Krebsova ciklusa da bi se dobili reducirani koenzimi. Upravo spomenute molekule acetil-CoA i oksalacetat najvažnije su za razumijevanje nastanka ketoze (Lutkić i Jurić, 2008).

Energija oksidacije molekula hrane pohranjena u obliku reduciranih koenzima (NADH i FADH2) koristi se u stanicama za sintezu ATP-a. Reducirani koenzimi nastali u glikolizi, ciklusu limunske kiseline ili oksidaciji masnih kiselina, prenose elektrone na molekularni kisik (O2) u lancu prijenosa elektrona (transportni lanac elektrona, respiracijski niz), a sami se pri tome regeneriraju (oksidiraju). Energija prijenosa elektrona kroz transportni lanac elektrona pretvara se u gradijent vodikovih iona, koji se koristi za sintezu ATP-a. Obzirom da se električni s reduciranim koenzima prenose preko lanca prijenosa elektrona na krajni akceptor elektrona – molekularni kisik, ovaj se proces prijenosa elektrona često naziva staničnim disanjem. Lanac prijenosa elektrona organiziran je u 4 kompleksa koja su ugrađena u unutrašnju membranu mitohondrija. Svaki od kompleksa sastavljen je od nekoliko proteina i na njih vezanih skupina (koenzimi, kofaktori, hem, ubikinon) kroz koje se elektroni prenose. Elektroni se s jednog kompleksa spontano prebacuju na drugi, budući da svaki naredni kompleks u nizu posjeduje veći afinitet za elektrone. Sa zadnjeg kompleksa elektroni se prebacuju na molekularni kisik koji ima najveći afinitet za elektrone. Prijenosom elektrona na molekularni kisik nastaje voda, te se stvara ukupno 32 molekule ATP-a (Stryer i sur, 2013).
Lucy (2015) smatra da glukoza utječe na cjelokupni organizam tako da ovisno o svojoj koncentraciji izaziva promjene u endokrinom sustavu. Tu se prvenstveno misli na inzulin i faktor rasta sličan inzulinu 1 (IGF-1). Povećana razina glukoze u krvi potiče izlučivanje inzulina, a on izaziva anaboličke procese. Pri tome inzulin potiče jetru na izlučivanje IGF-1. Upravo razina glukoze, te koncentracije ova dva hormona imaju važnu ulogu u metabolizmu krava pri laktaciji. Tako ovi anabolički procesi djeluju u srednjoj i kasnjoj laktaciji, kada je razina glukoze u krvi krava visoka zbog manje proizvodnje mlijeka. U tom stanju prevladavaju homeoretski mehanizmi koji pravilno raspoređuju glukozu u organizmu. Pri tome povećava se koncentracija inzulina i IGF-1 te dolazi do povećanja mase životinje.

2.6. Karakteristike prijelaznog razdoblja u mliječnih krava

U organizmu visokomliječnih krava postoji stalni "sukob" homeostatskih i homeoretskih mehanizama. Ovo je posebno izraženo kod pasmina selekcioniranih na visoku mliječnost te kod stanja posebnog metaboličkog opterećenja organizma, kao što su visoki graviditet i rana laktacija (Filipović i sur., 2007). Metabolizam visokomliječnih krava adaptira se na pojedine faze proizvodno-reproduktivnog ciklusa, uskladjujući količinu energije unesenu putem hrane sa uzdržnim i proizvodnim potrebama životinje. Peripartalni period ili tranzicijski period podrazumijeva period od mjesec dana prije i nakon teljenja. Ovaj period u proizvodnji mlijeka smatra se najkritičnijim i najtežim za uzgajivača. Najvažnija metabolička promjena koja karakterizira ovaj period je naglo povećanje potreba za energijom nakon teljenja, kombinirano s nedovoljnim unosom hranljivih tvari (Butler, 2012).

Metabolička ravnoteža u prijelaznom periodu ovisi o interakciji između glikogenoplastičnih i energetskih prekursora. Da bi se osigurao pravilan promet masti i energije, a nakupljanje triglicerida u jetri i ketogeneza sveli na minimum, neophodno je da hepatociti budu kontinuirano snabdjeveni glikogenoplastičnim tvarima (ugljikohidratima, aminokiselinama). U uvjetima NEB-a na početku laktacije, kada se lipomobilizacija intenzivira, ravnoteža između glikogenoplastičnih i energetskih tvari polako se remeti, tako da se (zbog pojačane lipogeneze i nakupljanja triglicerida) bez obzira na dostupne količine glikogenoplastičnih tvari ograničava gluconeogena sposobnost hepatocita. Od ukupne količine sintetizirane glukoze u prijelaznom periodu, svega se 10% koristi za potrebe bazalnog metabolizma, dok se sve ostalo koristi za potrebe fetusa, odnosno sintezu laktoze. Butler (2012) kaže da tijekom perioda kasne laktacije, a naročito tijekom perioda suhostaja, krava unosi veću količinu energije nego što je potrebno za zadovoljenje uzdržnih i potreba teleta, te se višak energije deponira u vidu masnog tkiva. Količina deponirane energije i njeno kasnije iskorištavanje unesenoj energiji ne samo od količine energije unijete hranom, već i od adaptivne sposobnosti grla. Zapravo grla se u ovoj fazi pripremaju za sljedeću laktaciju povećavajući svoju tjelesnu masu i tjelesne rezerve (Savić, 2010).

U kasnom suhostaju i ranoj laktaciji dozli do značajnog smanjenja unosa hrane, što produbljuje već postojeći problem poremećenog ravnoteže energije. Iz niza razloga, od kojih je na prvom mjestu nemogućnost unosa dovoljne količine hrane, u ranom prijelaznom periodu, homeoretski mehanizmi nadvladavaju homeostatske i proizvodnje mlijeka se održava najvećim dijelom na račun tjelesnih rezervi krave, pri čemu često lako dolazi do poremećaja.
zdravstvenog stanja životinje. Metabolizam ugljikohidrata i masti u visokom graviditetu karakteriziraju povećana glukoneogeneza u jetri i smanjenje periferne potrošnja glukoze, nepromijenjena ili smanjena potrošnja acetata i umjerena mobilizacija masnih kiselina iz masnog tkiva praćena povećanjem njihove potrošnje u perifernim tkivima. Cilj ovakve metaboličke konstrukcije jest da se plodu osiguraju dovoljne količine glukoze (kao izvora energije) i aminokiselina (kao prekursora za rast), dok je organizam majke usmjeren na potrošnju masnih kiselina i ketonskih tijela kao izvora energije. Postpartalno dolazi do inverzije nivoa glukoze i masnih kiselina, što ukazuje na veliku potrošnju glukoze u mliječnoj žlijezdi, dok se sistemski metabolizam usmjerava u pravcu korištenja lipida kao izvora energije, s ciljem da se u metaboličkom smislu, podrži laktacija (Savić, 2010).

Slika 2. Metaboličke promjene pri NEB-u


Na početku laktacije, hepatociti bivaju „zagušeni“ masnim kiselinama koje pristižu iz masnog tkiva uslijed intenzivne lipomobilizacije, te se u skladu s time smanjuje i njihov kapacitet za glukoneogenezom. Nedovoljna glukoneogeneza u jetri (iz propionata, glukoneoplastičnih aminokiselina unesenih hransom, glicerola i laktata) i pored smanjenja periferne potrošnje glukoze ne uspijeva da zadovolji rastuće potrebe mliječne žlijezde za glukozom, te nastaje deficit, koji može da iznosi i preko 500 grama dnevno. Postojanje
deficita glukoze i nedostatak glikogenopastičnih tvari u hrani potenciraju korištenje aminokiselina iz tjelesnih proteina, kao krajnje energetske rezerve organizma. Kada su u pitanju masti, mobilizacija masnih kiselina i njihovo povišenje u krvi nastaju zbog supresije lipogeneze u masnom tkivu i stimulacijom lipolize. Već tokom visokog graviditeta dolazi do smanjenja intenziteta lipogeneze i esterifikacije masnih kiselina, da bi se taj proces potencirao u početkom laktacije. Tokom perioda laktacije (naročito rane) mliječna žlijezda svoje potrebe u glukozi bazira na glukoneogenezi u jetri i smanjenju periferne potrošnje glukoze. Za potrebe mliječne žlijezde iskoristiva je samo glukoza stvorena u jetri, jer ona može difundirati u kriv i biti preuzeta od strane mliječne žlijezde (glukoza u perifernim tkivima, prije svega skeletnim mišićima, je fosforilisana u obliku glukozo-6-fosfata i može se iskoristiti samo u tkivima u kojima se nalazi kao takva, jer fosforilirana glukoza ne može izaći iz dotičnih stanica u krvotok).

Negativni energetski balans koji postoji kod krava tokom rane laktacije, treba da se popravi endogenom mobilizacijom glukoze (odnosno glukoneogenezom iz raspoloživih rezervi), za što je presudna adaptacija endokrinog sistema. Tokom ranog postpartalnog perioda, pojavljuje se NEB-a kao posljedica nesklada između rastućih potreba u energiji i smanjenog unosa energije hranom. Do tog dolazi zbog pada apetita i smanjenje resorptivne sposobnosti buraga (Filipović i sur., 2007). S povećanjem potreba u energiji na početku laktacije intenziviraju se katabolički i anabolički procesi. U vimenu dominiraju anabolički, a u masnom tkivu katabolički, dok se u jetri istovremeno odvijaju i anabolički (glukoneogeneza, sinteza triglicerida i lipoproteina) i katabolički procesi (beta oksidacija masnih kiselina). Dešavanja u ovom periodu su najbolji odraz fizioloških mogućnosti organizma za prilagođavanje i adaptaciju. Posebno opterećenje za organizam visokomliječne krave predstavlja činjenica da se 40-60% mlijeka proizvode do 120.-og dana laktacije, što se poklapa sa periodom smanjenog unosa hrane i vremenom kada bi se krave trebale tjerati i koncipirati. Organi koji najviše trpe ovo metaboličko opterećenje su prije svega jetra, mliječna žlijezda, te probavni i reproduktivni organi. Krave kod kojih je NEB jače izražen češće oboljevaju od ketoze ili masne infiltracije jetre, ali i drugih poremećaja energetskog i mineralnog metabolizma. Proces adaptacije organizma na nastali negativni energetski balans traje približno do 72. dana laktacije (10-11 tjedana). U to vrijeme ponovno se uspostavlja narušena ravnoteža između proizvodnje mlijeka i potrebnih hranjivih tvari koje se unose krmivima (Savić, 2010).
2.7. Biokemijski pokazatelji energetskog statusa krava

Najbolji i najdostupniji pokazatelj energetskog statusa u krava jest orijentacijsko određivanje razine ketonskih tijela u mokraći, mlijeku i krvi. Međutim, s obzirom na činjenicu da je sama pojava ketonurije odraz unapredoveketonemije, ovaj pokazatelj slab je koristan u smislu pravovremene procjene zdravstvenog statusa životinje. Naime, kada govorimo o ketonuriji, to znači da je krava u teškom metaboličkom stanju (Filipović i sur. 2007). Dokazivanje ketonskih tijela u mokraći pokazalo se i vrlo nepouzdanim zbog pojave lažno pozitivnih reakcija (Oetzel, 2015).

Preventivni pristup metaboličkim poremećajima je određivanje biokemijskih pokazatelja energetskog statusa u krvi u razdoblju oko teljenja i na početku laktacije, na određenom broju životinja iz stada, a zatim slijedi pravodobna korekcija hranidbe. Kao najpouzdaniji pokazatelji negativne energetske ravnoteže i predispozicije za ketozu koristiti se razina SMK (slobodne masne kiseline) i βHBA u krvnoj plazmi/serumu. Unatoč tome, potpunija slika o energetskom statusu može se dobiti samo istodobnim određivanjem ostalih pokazatelja, a to su: razina glukoze, triglicerida, kolesterol, te profil lipoproteina krvnog seruma (Filipović i sur., 2007).


Trigliceridi u krvi jedan su od izvora masnih kiselina za sintezu mliječne masti u sekretornim stanicama mliječne žlijezde. Trigliceridi se transportiraju u krvi najvećim dijelom u sastavu hilomikrona i VLDL-a. Trigliceridi čačnjavaju 60 % VLDL, 1% lipoproteina male gustoće (engl. Low density lipoproteins – LDL) i 4 % lipoproteina velike gustoće (engl. high density lipoproteins – HDL) kod krava. Lipoprotein lipaza u endotelu kapilara brojnih tkiva, najviše masnog tkiva, srčanog i skeletnog mišića te mliječne žlijezde, razgrađuje hilomikrone i VLDL, omogućujući time ulazak nastalih masnih kiselina u tkiva i njihovu razgradnju, odnosno ponovnu esterifikaciju u masnim stanicama. Porast triglicerida u plazmi rezultat je njihove povećane resorpcije u crijevima i povećane sinteze u jetri, dok je pad odraz smanjene resorpcije, smanjene sinteze u jetri i povećanog opsega razgradnje triglicerida.

Filipović i sur (2007) u vlastitim istraživanjima su utvrdili da u prvim danima laktacije kod holštajnskih krava dolazi do značajnog pada razine serumskih triglicerida, što su povezali sa njihovom ubrzanom potrošnjom za podmirenje energetskih potreba i sintezi mliječne masti.
2.8. Energetika mliječnosti


Mnogo važniju ulogu u glukoneogenezi ima propionat. On preko sucinata ulazi u ciklus limunske kiseline gdje se stvara suvišak oksalacetata (OA). Djelovanjem enzima fosfoenolpiruvatkarboksikinaze OA prelazi u fosfoenolpiruvat, koji ulazi u obrat glikolitičkog puta. Pritom 2 mola propionata tvore 1 mol glukoze, odnosno 1 g propionata teoretski prelazi u 1,23 g glukoze. U fiziološkim uvjetima manji dio glukoze sintetizira se iz glukoplastičnih aminokiselina, koje nakon deaminacije ulaze u ciklus limunske kiseline, te na taj način povećavaju tvorbu OA. Iz navedenoga može se zaključiti da se, osim hranidbenim režimom, sustav glukoneogeneze može pospješiti dodavanjem glukoplastičnih NMK. Međutim, suvišak laktata prouzročit će jaki toksični učinak, pa se njegova primjena u praksi ne preporučuje, za razliku od propionata (Filipović i sur., 2007).
2.9. Rizični faktori koji dovode do NEB-a i ketoze


Tablica 1. Pokazatelji ocjene kondicije mliječnih krava

<table>
<thead>
<tr>
<th>Ocjena</th>
<th>Repna jama</th>
<th>Sjedne i bočne kvrga</th>
<th>Pobočni nastavci slabinskih kralježaka</th>
<th>Okomiti nastavci i rebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>duboke</td>
<td>Oštro istaknute</td>
<td>Oštri, jasno vidljivi</td>
<td>Oštro istaknuti</td>
</tr>
<tr>
<td>2</td>
<td>plitke</td>
<td>istaknute</td>
<td>vidljivi</td>
<td>Dobro opipljivi</td>
</tr>
<tr>
<td>3</td>
<td>Umjereno ispunjene</td>
<td>Umjereno zaobljene</td>
<td>opipljivi</td>
<td>Mogu se napipat</td>
</tr>
<tr>
<td>4</td>
<td>ispunjene</td>
<td>Dobro opipljive</td>
<td>Teško opipljive</td>
<td>Zaobljeni</td>
</tr>
<tr>
<td>5</td>
<td>Potpuno ispunjene</td>
<td>Teško opipljive</td>
<td>prekrivene masnim tkivom</td>
<td>Nevidljivi</td>
</tr>
</tbody>
</table>

Izvor: Pejaković, 2001

U prvih 90-tak dana laktacije krava troši određene količine tjelesnih rezervi pa će ocjena kondicije normalno pasti na 2,50 do 3,00 boda, ali ne bi smjela pasti ispod ocjene od 2,5. Krave izrazito visoke proizvodnje mlijeka mogu u prvoj fazi laktacije izgubiti kondiciju i do 1,5, a da to ne izazove metaboličke poremećaje. U drugoj trećini laktacije pad kondicije se zaustavlja i krava polagano ponovno počinje nakupljati tjelesne rezerve. To je puno izraženije u zadnjoj trećini laktacije. U toj fazi povoljno je da se krava ponovno vrati na stanje prije
teljenja, to jest, da dostigne kondiciju u vrijednosti od 3,5 i u takvoj kondiciji uđe suhostaj. Tijekom suhostaja krava mora zadržati postojeću kondiciju tako da sljedeće teljenje dočeka u optimalnoj kondiciji (Pejaković, 2001).


Slika 3. Vanjski izgled krave u ketozi

Izvor: https://commons.wikivet.net/images/d/dd/Cattle_Medicine_1.jpg
2.10. KETOZA

Koncem 90-ih godina prošlog stoljeća ketoza je postala najčešća metabolička bolest u mlječnih goveda, učestalija od acidoze i mlječne groznice (hipokalcemije). U stadu je vrlo teško ocijeniti stupanj ketoze koji je prisutan, budući da je klinički oblik ketoze (koji najčešće opaža stočar) od ograničenog kliničkog značaja za određivanje statusa stada. Proizvođači s malim stadima skloni su totalnom zanemarivanju značaja ketoze, dok oni s velikim stadima, najčešće umanjuju utjecaj i prisutnost ove bolesti. U stadima zahvaćenim ketozom učestalija je pojavnost dislokacije sirišta, uginuća, mlječne groznice (ležanja poslije poroda) i hipokalcemije, zaostajanja posteljice i smanjene plodnosti te naglog gubitka tjelesne mase i smanjenja apetita po teljenju. No, niti jedan od ovih kliničkih nalaza ne potvrđuje sa sigurnošću i prisutnost ketoze u stadu (Zobel, 2011). Lupič i Jurić (2008) govore da je ketoza bolest kojoj je uzrok nedostatak glukoze na periferiji organizma pa nastaje ketonemija (pojava ketonskih tijela u krvi) koja zatim veže ketonuriju (pojavu ketonskih tijela u urinu) i pojavu ketona u mlijeku. Dva ketonska tijela također su organske kiseline koje, opet, uzrokuju metaboličku acidoze tako da je i ova bolest učestala kod krava u ketozi. Osim goveda ketoza zahvaća i druge domaće životinje, te su tako u veterani i stočarstvu poznate ove vrste ketoze:

- Laktacijska ketoza u krava (kada krave troše mnogo glukoze za sintezu mlijeka, a hranidba ne pokriva proizvodnju)
- Gestacijska ketoza u ovaca (kada ovca nosi dva ploda i zbog toga troši mnogo glukoze)
- Ketoza u gladovanju (kada se u gladovanju potroše rezerve glukoze pa se masovno krene trošiti masno tkivo i dolazi do velikog stvaranja acetil-CoA)
- Diabetična ketoza

U današnjoj proizvodnji zbog različitih vanjskih utjecaja znaju se pojavljivati tri tipa ketoza iako je dosta teško utvrditi granice između njih.

**Tip I** je spontana ili gladna ketoza koja se javlja 3 do 6 tjedana nakon porođaja, budući da je u to vrijeme utrošak energije i potreba za energijom najveća. U ovih se grla simptomi ne primjećuju ranije budući da se ove krave, u pravilu, tele normalno i posve normalno započinju s laktacijom. Prognoza u ovih grla je dobra budući da im je potrebna “mala pomoć” u obliku preteča glukoze (glicerol, natrijev propionat) kako bi se brzo oporavila i nastavila s normalnom proizvodnjom (Zobel, 2011). Ključ za prevenciju ovog tipa ketoze je povećanje energetske komponente u obroku tijekom rane laktacije (npr. kukuruzna prekrupa – šrot) uz...
dodatak prekurzora (preteča) glukoze, te dobar mendžment u suhostaju tako da se krava dobro pripremi za teljenje i početak laktacije. Jedan od mogućih uzroka pojava ovog tipa ketoze je i prenapučenost (pretpranost) prostora budući da su svježe oteljene krave izuzetno osjetljive na vanjske utjecaje i stres, a što se očituje smanjenim uzimanjem hrane. Ovaj tip ketoze se zna javiti i u slučajevim kada su krave duže vrijeme hranjene krmivima bogatim proteinima, a siromašnim ugljikohidratima, te tu dolazi do energetskog pada (Garrett, 2007).

**Tip II** se pojavljuje kod pretih krava. Ovaj oblik ketoze nekada je nazivan “sindromom debele krave”, no danas je poznato kako zahvaća sve krave koje su prisiljene mobilizirati vlastite masne zalihe neposredno prije porođaja. (Zobel, 2011). Prekomjerno debele životinje sklonije su pojavu ovih oblika ketoze budući da su sklonije slabijem uzimanju hrane neposredno prije i poslije porođaja. Održavanje pozitivnog energetskog balansa u životinje neposredno prije porođaja može biti otežano budući da je volja za uzimanjem suhe hrane u danima prije teljenja nešto smanjena. Pored navedenog, faktori rizika za pojavu ovog tipa ketoze su i premještanje krava neposredno prije teljenja, prenapučenost rodilišta, često uvodenje novih grla u rodilište, nedovoljno hranidbenog prostora, previsoke temperature tijekom vrućih mjeseci, nedovoljna ventilacija prostora, premještanje krava u novi prostor odmah po teljenju te prenapučenost prostora u kojima životinja boravi neposredno po teljenju (Gerrett, 2007). Osnovna pojava pri ovom tipu ketoze je razvoj “sindroma masne jetre”. U pravilu je omalčenje jetre razvijeno i prije porođaja, no manifestira se neposredno po teljenju, unutar dva do tri tjedna (Savić, 2010). Pretile krave strelivito gube na tjelesnoj masi i unutar nekoliko dana postaju mršave uz izrazito slab apetit. Ovaj tip ketoze u pravilu prate i otežano teljenje, zaostajanje posteljice i upala maternice. Smrtnost je visoka, a prognoza dubiozna. Liječenje mora biti promptno i započeto čim se primijete prvi znaci ove bolesti. Kako je pri ovom tipu ketoze zahvaćena (umanjena) i funkcija jetre, smanjuje se proizvodnja crvenih krvnih zrnaca (eritrocita), smanjuje se funkcija jetre kao “filtra” (pročišćivača) organizma čime je omogućen razvoj intoksikacije (organizam preplavljuju toksini koji se upijaju iz maternice i probavnog sustava), javljaju se septikemije (umanjena obrambena sposobnost jetre te organizam preplavljuju razni mikroorganizmi), a čime se omogućuje razvoj upala maternice, vimena i pluća. Životinja, u pravilu, ugiba zbog posljedica upale vimena ili pluća, odnosno zbog nastale septikemije (Zobel, 2011).
Tip III je ketoza uzrokovana kiselom silažom. U pojedinim se stadima javlja ovaj tip ketoze uzrokovан prekomjernim davanjem kisele silaže ili sjenaže. Sjenaža koja je pokošena previše mokra, kao i ona koja je siromašna vodotopljivim ugljikohidratima pogoduje razvoju i umnažanju bakterija roda Clostridium. Ove bakterije fermentiraju ugljikohidrate u maslačnu, umjesto u mliječnu kiselinu. Kukuruzna silaža vrlo rijetko pogoduje rastu i umnažanju bakterija Clostridium spp. jer je najčešće dovoljno bogata vodotopljivim ugljikohidratima. Vrijeme košnje također značajno utječe na količinu vodotopljivih ugljikohidrata u sjenaži, te je tako njihova koncentracija najviša u satima tijekom ranog poslije podneva. Silaža zahvaćena fermentacijom uz pomoć Clostridium spp. bakterija lako je prepoznatljiva po karakteristično “užeglom” mirisu, mirisu po pokvarenom maslacu te degradaciji (truljenju) bjelančevina. Već 50 do 100 grama dnevnog unosa maslačne kiseline uzrokuje pojavu ketoze, a 200 grama pojavu teškog oblika ketoze (Garrett, 2007). U ovom slučaju, farmeru ostaju samo dva izbora u pogledu silaže: razrjeđenje ili uništavanje ukupne silaže. Prvi je korak analiza silaže koju može provesti i HPA – Hrvatska poljoprivredna agencija. Slijedi postupak provjetravanja (aeracije) silaže čime se smanjuje postotak maslačne kiseline u njoj, a potom dodavanje sredstava za neutralizaciju kiselina (kreda, vapno i slično.). Ukoliko je, pak, u silaži prisutno više od 2% maslačne kiseline, silažu je najbolje uništit i neškodljivo ukloniti (Zobel, 2011).

Osim ove podjele, ketozu dijelimo i na primarnu i sekundarnu. Primarna ketoza nastaje kao posljedica neuravnotežene prehrane i poremećaja energetske ravnoteže u organizmu. Sekundarna ketoza nastaje uz druge bolesti koje onemogućavaju uzimanje hrane i opskrbu energijom kao što su dislokacija sirišta, zaostajanje posteljice, metritis, mastitis, bolesti papaka, traumatska indigestija i druge. Osim inapetencije uočavaju se i živčani poremećaji, pretjerano lizanje i nesiguran hod (Zobel, 2011).
Također dodatnu komplikaciju u klasifikaciji ketoze donosi i podjela ketoze s obzirom na kliničku sliku bolesti. Tako se javlja subklinička i klinička ketoza. Subklinička ketoza ozbiljnije je stanje jer simptomi vrlo rijetko dolaze do izražaja pa ju je puno teže dijagnostirati. Vrlo često dolazi samo do smanjenja mliječnosti, a mokraća povremeno može imati miris po acetonu. **Klinički oblik ketoze** javlja se u vidu probavnog tipa, neurološkog tipa, mješavine ova dva tipa i u vidu oblika koji podsjeća na puerperalnu parezu. Manji broj životinja oboli uz vidljive znakove bolesti, naročito ako se sa terapijom počne na vrijeme, dok neke životinje mogu i spontano da ozdrave. Tijek bolesti najčešće je akutan i pri pravilnoj i blagovremenoj terapiji većina krava ozdravi za 2 do 4 dana, ali mogući su recidivi. U težim slučajevima i kod dužeg tijeka bolesti dolazi do oštećenja jetre usljed masne degeneracije, a ako se sa terapijom ne počne na vrijeme životinja uginje u hipoglikemičnoj i acetonemičnoj komi.

Probavni ili digestivni tip je najčešći oblik ketoze i sličan je kliničkoj slici indigestije. Kod ovog tipa životinje postepeno ili naglo gube apetit, prestaju preživati, slabi kondicija, smanjuje se mliječnost za 50 do 70% i naglo mršave. Nastaje atonija buraga, defekacija je usporena, a ponekad se javlja i dijareja. Životinja stoji s pogrbljenim leđima, spuštenom glavom, poluzatvorenim očima i apatična je. Zadah životinje često ima sladunjav miris na aceton. Ketonska tijela se izlučuju putem mokraće i mlijeća i mogu se dokazati raznim brzim kliničkim testovima.

Neurološki oblik bolesti može se javiti samostalno ili sa digestivnim tipom, a najčešće se javlja poslije ili prije porođaja i mnogo je ozbiljniji od digestivnog tipa. Pored gubitka apetita i smanjenja mliječnosti javljuje se i neurološki simptomi bolesti u vidu ekscitacije, pareze, parestezije i hiperestezije. Životinje žvaču u prazno, škripe zubima, riču, imaju divlji pogled, oči su im iskolačene, a iz usta im se cijedi slina.

Oblik ketoze sličan puerperalnoj parezi javlja se nakon porođaja i kod njega simptomi podsjećaju na puerperalnu parezu s tim što je pupilarni refleks očuvan i terapija kalcijem ne daje rezultate (Radić, 2010)
2.10.1. Ketogeneza

Aceton, acetoacetat i β-hidroksibutirat nazivaju se ketonskim tijelima. Nastaju kao normalni proizvod organizma razgradnjom ketogenih aminokiselina. Ipak glavna količina potječe od razgradnje masnih kiselina u jetri. Razgradnjom masnih kiselina kao krajnji proizvod nastaje acetil-CoA koji se može dalje razgraditi u ciklusu limunske kiseline. Prilikom gladovanja, dijabetesa ili pri zahtjevnoj govedarskoj proizvodnji, kada se poremeti metabolizam ugljikohidrata, obilno se tvori acetil-CoA zbog velikog utroška masnih kiselina iz masnih depoa. Prilikom navedenih stanja dolazi do manjka glukoze u krvi, te se glukoza stvara iz neugljikohidratnih preteča među kojima je i oksaloacetat (Karlson, 1988).

Oksaloacetat je ključna karika za metabolizam ugljikohidrata jer se u ciklusu limunske kiseline kondenzira sa acetil CoA. Ako u organizmu imamo manjak oksaloacetata, a razgradnjom masnih kiselina se stvara velika količina acetil-CoA koči se ciklus limunske kiseline. Nastali acetil-CoA koji se nakuplja u matriksu mitohondrija jetrenih stanica prevodi se u ketonska tijela u procesu koji se naziva ketogeneza. Sintetizirana ketonska tijela otpuštaju se u kriv i opskrbljuju mozak, srčano i skeletno mišićno tkivo, te druge organe energijom (Lutkić i Jurić, 2008).

Karlson (1988) tvrdi da se ketogeneza odvija u matriksu mitohondrija hepatocita gdje se prvo vrši kondenzacija dvije molekule acetil-CoA djelovanjem enzima 3-ketotiolaze u acetoacetil-CoA. Ova molekula se u narednom koraku kondenzira s još jednom molekulum acetil-CoA uz pomoć enzima hidroksimetilglutaril-CoA-sintetaza i nastaje 3-hidroksi-3-metilglutaril-CoA. U sljedećem koraku se 3-hidroksi-3-metilglutaril-CoA cijepa djelovanjem hidroksimetilglutaril-CoA-liaze te nastaje acetoacetat i acetil-CoA. Nastali aceto-acetat se potom reducira pomoću NADH u 3-hidroksibutirat djelovanjem 3-hidroksibutirat dehidrogenaze. Ukoliko je koncentracija acetoacetata visoka, tada acetotacetat spontano dekarboksilira u aceton. Nastala ketonska tijela difundiraju u krv i krvlju se prenose do stanica srčanog i skeletnih mišića te bubrega gdje služe kao alternativni izvor energije. Srčani mišić i bubrez radije koriste ketonska tijela nego glukozu kao izvor energije, te zbog toga stanice jetre i pri normalnim fiziološkim uvjetima proizvode malu količinu ketonskih tijela za potrebe ovih organa. Pri dužem gladovanju i mozek se prebacuje na uporabu ketonskih tijela kao alternativnog izvora energije. Tako se mozek može adaptirati da kao metaboličko gorivo može koristiti 30% glukoze (glukoneogeneza u jetri) i 70% ketonskih tijela (ketogeneza u jetri).
Srčano, skeletno mišićno tkivo i mozak koriste ketonska tijela tako što ih prevode ponovno u acetil-CoA koji se onda oksidira u procesu ciklusa limunske kiseline, a energija nastala u tim procesima se koristi za stvaranje ATP-a. Razgradnja ketonskih tijela ili ketoliza počinje oksidiranjem 3-hidroksibutirata uz enzim 3-hidroksibutirat-dehidrogenazu u acetoacetat. 3-ketoacil-CoA-transferaza onda prenosi CoA sa sukcinil-CoA na acetoacetat i nastaje acetoacetil-CoA. Na kraju acetoacetil-CoA se uz pomoć enzima acetoacetil-CoA tiolaza cijepa na dvije molekule acetil-CoA i one nastavljaju oksidaciju u stanicama do ATP-a. Također treba napomenuti da jetra ne može koristit ketonska tijela za energiju zbog nedostatka enzima 3-ketoacil-CoA-transferaze. Razlog ovome je što u gladovanju tijelo teži da prvo energijom zadovolji organe poput mozga ili srčanog mišića, dok su visceralni i drugi organi sekundarni po energetskom pitanju (Stryer i sur., 2013).

Slika 4. Shema nastanka ketonskih tijela

Izvor: http://www.frontiersin.org/files/Articles/101953/fphys-05-00260-HTML/image_m/fphys-05-00260-g001.jpg
2.10.2. Patogeneza laktacijske ketoze u krava

Nakon teljenja započinje laktacija, to jest, faza lučenja mlijeka koja u prosijeku traje 305 dana. Prva dva mjeseca laktacije drastično se povećava laktacijska krivulja i to je faza najveće proizvodnje mlijeka koja u većini slučajeva nadmašuje hranidbene potrebe životinje. Vrlo često na farmama s lošim menadžmentom i hranidbenim programom upravo u ovoj fazi dolazi do najvećih zdravstvenih problema kod krava i jakog mršavljenja životinja (Kralik i sur., 2011).

U toj fazi mnogostruko se povećava intenzitet sinteze mlijeka (tako i sinteza laktoze iz glukoze), te se smatra da vime mliječne krave na dan troši oko 1,25 kg glukoze. Količina glukoze u krvi se smanjuje jer se glukoza troši u vimenu za proizvodnju mlijeka i nastaje hipoglikemija ili smanjenje razine šećera u krvi. Ovo smanjenje glukoze u krvi detektiraju biološki senzori te počinje lučenje gušterica iz gušterače (uočeno je da između preživača i nepreživača u tome pogledu postoji razlika, jer se u preživača u hipoglikemiji ne smanjuje lučenje inzulina, nego se razina inzulina u krvi regulira količinom propionske kiseline u krvi).

Glukagon se iz gušterače luči u krv i očituju se dva učinka, trenutni i odgođeni. Prvo se glukoza iz jetre pod utjecajem gušterica naglo otpušta u krv pa se koncentracija glukoze u krvi normalizira. Osim toga glukagon potiče glukoneogenzu (proces stvaranja glukoze iz neugljikohidratnih preteča), a kao supstrat služi propionska kiselina koja se iz krvi upija u jetru. Manjak propionske kiseline u krvi potiče smanjenje lučenja inzulina jer je upravo razina propionske kiseline njegov regulator. Smanjenje razine inzulina u krvi omogućava lipolizu tako da se ona u masnom tkivu povećava, jer je ponestalo inhibitora, a to je inzulin.

Razgradnja triglicerida u masnom tkivu dovodi do snažnog povećanja koncentracije masnih kiselina u krvi. Slobodne masne kiseline se sad slobodno upijaju u jetri pa je u takvim okolnostima preplave. Dolazi tako do pojave masne infiltracije jetre zbog velikog nakupljanja masnih kiselina, te do povećanja β-oksidacije istih zbog čega se sve više povećava količina acetil-CoA u jetri. Obilje acetil-CoA ne može se u potpunosti oksidirati u ciklusu limunske kiseline ili oksidativnoj fosforilaciji i zbog toga se nakuplja u mitohondrijskom matriksu. Zbog toga se višak acetil-CoA usmjerava na drugi metabolički put, a to je ketogeneza. Tako u početku nastaju znatne količine acetoctetatil-CoA. On se zatim prevodi u tri ketonska tijela (acetaceton, aceton, β-hidroksibutirat) koja dospjevaju u krv (ketonemija), te iz krvi u urin (ketonurija) ili u mlijeko (Lutkić i Jurić, 2008).
2.10.3. Učestalost pojave ketoze

Procjenjivanje učestalosti pojave ketoze pokazalo se kao veliki test. Kao i druge bolesti, tako i ketoze prvenstveno ovisi o individualnim karakteristikama životinje. Tako su neke životinje ili stada otpornije na ketozu, dok su neka stada ili životinje podobnije ketozi. Na pojavu ketoze također utječu brojni drugi čimbenici koji se moraju uzeti u obzir prilikom istraživanja ove problematike, kao što je hranidba, uvjeti držanja, njega životinja, mikroklima, napajanje vodom, tjelesna kondicija i drugo. Pokazalo se da se subklinička ketoza pojavljuje češće kod krava koje su držane grupno nakon teljenja, te se kod njih ketoza javlja ranije oko 2 do 3 tjedna nakon teljenja. Kod krava koje su držane pojedinačno učestalo pojave ketoze je manja i ona se većinom javlja 3 do 6 tjedana nakon teljenja (Oetzel, 2015). Vremenski period kada se mjeri koincidence ketoze treba biti strogo definiran posebno u rizičnim periodima. Tako se preporučuje ponavljanje testova. Test se treba vršiti dva ili više puta tjedno zbog toga što se ketoza može pojaviti i nestati u periodu od svega 5 dana. Tako se u slučaju testiranja jednom tjedno, ketoza može pojaviti, a da je nismo ni registrirali. Upravo zbog toga točni podatci o pojavnosti ketoze dobivaju se tek u istraživačkim radovima (Oetzel, 2015). Ipak zbog nemogućnosti ovako čestog testiranja preporučava se testiranje barem dva puta mjesečno što se u praksi najčešće i koristi.

2.10.4. Dijagnostika ketoze

U zadnjih dvadesetak godina uznemiravala je dijagnostika metaboličkih bolesti kod mliječnih krava. Dijagnostika ketoze bazira se prvenstveno na lociranju i detektiranju ketonskih tijela u krvi, mlijeku ili urinu goveda, te su se tako razvili brojni postupci njihovog utvrđivanja (Carrier i sur., 2004).


Enjalbert i sur. (2001) govore da je granična razina βHBA u krvi goveda je ≥ 14.4 mg/dl (>1400 μmol/L ili 1,4 mmol/L). Goveda koja u početku laktacije imaju koncentraciju βHBA iznad granične razine imaju veliku mogućnost za oboljenjem od kliničke ketoze ili drugih metaboličkih bolesti, a kod goveda čija je koncentracija iznad 19,4 mg/dl ili iznad 2000 μmol/L (2,0mmol/L) dolazi do drastičnog pada mliječnosti. Garrett (2007) ipak navodi da neke studije spuštaju tu razinu pri dijagnostici ketoze na 11,7 mg/dl ili 1200 μmol/L (1,2
mmol/L). Mnogi drugi autori navode slične vrijednosti. Tako McArt i sur. (2012) navode da je granica βHBA za subkliničku ketozu od 1,2 do 2,9 mmol/L. Oetzel (2015) navodi vrijednosti βHBA u krvnom serumu od 1,2 mmol/L (1200 μmol/L ili 12,4 mg/dl) kao ključnu granicu, ali upozorava da je moguća pojava ketoze i kod nižih granica. Ipak generalno gledajući mnogo veće razine βHBA u krvi signaliziraju ketozu. Tako vrlo često kod kliničke ketoze koncentracije mogu biti veće i od 29 mg/dl ili oko 3000 μmol/L (3,0 mmol/L), dok neka goveda mogu imati visoke koncentracije bez pokazivanja ikakvih simptoma bolesti (Gerrett, 2007).


Serumski βHBA potječe iz jetre ili dolazi u krv putem apsorpcije butirata iz buraga, koji se kasnije vrlo lako i brzo konvertiraju u βHBA. Obično se koncentracija βHBA povećava nakon obroka, pa se pouzdan način detektiranja βHBA u krvi određuje uzimanjem krvi 4 do 5 sati nakon obroka. Veliki problem u brojnim stadima je subklinički oblik ketoze, pri kojem stočar ne primjećuje promjene zdravstvenog stanja životinje. Subklinički oblik je znatno češći od kliničkog oblika i uzrokuje dugotrajne velike ekonomske štete u vidu smanjene mliječnosti, smanjene plodnosti te sklonosti drugim bolestima (McArt, 2012). Tako se u stadima koji pate od subkliničke ketoze u velikoj mjeri javljaju i drugi metabolički poremećaji od masne jetre, dislokacije sirišta, mliječne groznice i drugih bolesti (Zobel, 2011). Garrett (2007) navodi tako da se kod goveda koja imaju ketozu u početku laktacije povećava do 8% broj slučajeva
dislokacije sirišta, te se zbog manje mliječnosti za 8% smanjuje broj grla u stadima, to jest, povećava se izlučenje grla koja ne zadovoljavaju sa svojom produkcijom.

Danas na farmama postoje brojne brze kliničke tehnike određivanja razine ketonskih tijela kod mliječnih goveda. To su testovi poput brzog određivanja ketonskih tijela u krvi, mlijeku i urinu goveda, Cowside testovi (Weng i sur., 2015). Ovi testovi imaju prednosti spram laboratorijskog određivanja βHBA u krvi zbog tog što se izvode brzo, zahtijevaju manje fizičkog rada i brzo se dolazi do rezultata. Ipak veliki je manjak što njihova točnost nije velika kao kod laboratorijskog načina testiranja (Zhang i sur., 2011).

**Brzi klinički testovi (Cowside tests)**


*Keto test u mlijeku* ima velike prednosti spram urinskog testa zbog lakoće testiranja i mogućnosti testiranja svih krava u uzgoju. Ipak pokazalo se da test u mlijeku nema toliku osjetljivost kao urinski test (Gerrett i sur., 2007). Prilikom ispitivanja mlijeka mogu se koristiti i testovi s nitroprusidom za utvrđivanje koncentracije acetoacetata, ali ovaj test ima lošu osjetljivost i specifičnost usporedivši ga sa drugim testovima, posebno laboratorijskim, te se ne preporučuje kao metoda za monitoring ketoze u velikim stadima i na farmama (Zhang i
Pokazalo se da je određivanje βBHA u mlijeku puno pouzdaniji test nego određivanje acetoacetata. Garrett i sur. (2007) utvrdili su da je test imao stopu osjetljivosti od 83% i specifičnost od 82%. Ova vrsta pretrage koristi se doista i u Republici Hrvatskoj iako je u zadnje vrijeme doista zamjenjuje krvi test. Ovu pretragu se preporučuje prepustiti veterinaru ili veterinarskom tehničaru na farmi. Mlijeku se prvo treba izmusti na reakcijsku trakicu keto testa. Nakon toga ovisno o postojanju ketoze ili ne, te o koncentraciji βHBA u mlijeku, reakcijska trakica reagira te mijenja boju. Na kraju za potvrdu postojanja bolesti, reakcijsku trakicu uspoređujemo s tablicom na kojoj su upisane boje i koncentracije βHBA. Kada se boje na tablici i reakcijskoj trakici poklapaju, znači da je tolika razina βHBA u mlijeku krave. Vrijednosti kojima se utvrđuje koncentracija βHBA u mlijeku pri provedbi keto testa je većinom izražena u mg/dL, a test je negativan kada je koncentracija ispod 5 mg/dL.

Slika 5. Trakica za određivanje ketonskih tijela u mlijeku

Izvor: http://www.elancoanimalhealth.co.uk/products-services/dairy/easset_upload_file310_68492_e.png

Keto test u krvi danas je omogućio bolje razumijevanje i bržu dijagnozu ketoze. Danas se u uporabi za otkrivanje βHBA u krvi krava koristi Precision Xtra keto metar. Ovaj uređaj je prvenstveno namijenjen ljudskoj populaciji u mjerenju ketonskih tijela i glukoze (Zhang, 2011). Najveće iznenadenje za ovaj uređaj je što nije potrebno nikakvo novo kalibriranje ili prilagođavanje uređaja kada hoćemo testirati krave. Uređaj je vrlo lagan za korištenje. Krv se

Slika 6. Uređaj za mjerenje ketonskih tijela u krvi (Precision Xtra, Abbott Laboratories, Illinois, Sjedinjene Američke Države)

*Izvor:*

http://static1.squarespace.com/static/52a0933ce4b061dbb499e8aa/t/54c109f6e4b056c80411db2e/1421937143398/Arden's+Day_Precision+Xtra1.JPG
**Laboratorijski testovi**

*Enzimska kataliza.* Zhang i sur. (2011) navode ovu metodu određivanja serumskog βHBA. Ovaj test je razrađen 60-tih godina prošlog stoljeća. Upravo zbog ovog testa izrađene su trakice za testiranje. Prilikom ovog testiranja mora se koristiti ultraljubičasti spektrometar ili neki od biokemijskih analizatora. Ovdje se testira serumski βHBA te je predložena granica dijagnoze ketoze od 1,2 do 1,4 mmol/L.

*Infracrvena spektroskopija sa furijevom transformacijom (FTIR spektroskopija).* Zhang i sur. (2011) navode detekciju acetoacetata u mlijeku uz pomoć FTIR spektroskopije. Putem ove tehnike može se određivati i razina βHBA. Navode značajnu osjetljivost i specifičnost ovog testa. Tako je osjetljivost testa bila 69 do 70%, a specifičnost 95%, te je lažno pozitivnih i lažno negativnih testova bilo svega od 6 do 7%.

*Fluorometrička detekcija βHBA* je metoda koja se koristi na krvnim i mliječnim uzorcima, te se bazira na oksidacijskoj razgradnji βHBA. Prednost ove metode je u tome što ne dolazi do hemolize krvnih uzoraka te se mliječni uzorci prije testiranja ne trebaju kemijski tretirati. Ovo sve olakšava testiranje te se pri ovoj metodi može u kratkom periodu izvršiti puno testova (Zhang, 2011)

*Određivanje acetona plinskom kromatografijom* također se koristi u laboratorijskim uvjetima. Ovom metodom se utvrđuje razina acetona u krvi i mlijeku. Tako je utvrđeno da je osjetljivost ovog testa na aceton u krvi 91,7%, a specifičnost 68,3%, dok su ovi parametri za aceton u mlijeku 91,7% i 57,4% (Zhang, 2011).
2.10.5. Negativni utjecaji ketoze

Kao i svaka metabolička bolest, tako i ketoza za sobom vuče mnoge druge probleme. Tu se prvenstveno vidi smanjenje mliječnosti koje je danas u intenzivnoj govedarskoj proizvodnji od velikog ekonomskog značaja, pa sve do pojave drugih metaboličkih problema. Također stopa izlučenja grla iz mliječnih stada je povećana, te se povećavaju i učestalosti reproduktivnih problema (Raboisson i sur., 2014).

**Smanjenje mliječnosti**

Negativan utjecaj ketoze na smanjenje mliječnosti kod mliječnih krava je općie poznat. Također ocjenjivanje točne granice utjecaja ketoze na smanjenje mliječnosti je vrlo neprecizno i postoje oprečni podatci vezani za ovaj problem. Oetzel (2015) navodi studije u kojima su testirane krave sa i bez ketoze. Studije su pokazale učestalost smanjenja mliječnosti od 4,4 do 6,6%, to jest, od 0,9 do 1,4 kg. Osim toga navodi vlastitu studiju gdje je došlo do smanjenja mliječnosti za 0,9 kg (3,4%) u prvih 30 dana laktacije u usporedbi sa kravama koje nisu imale ketozu. Rana detekcija i liječenje ketoze propilen glikolom (300 ml peroralno) dovela je do povećanja mliječnosti kod ketotičnih krava za 0,45 kg (2,2%). Dohoo i Martin (1983) navode u svojoj studiji da je došlo do pada mliječnosti za 1 do 1,4 kg po kravi. Ustanovila se povezanost koncentracija βHBA u krvnom serumu sa smanjenjem količine mlijeka u mliječnih krava. Tako svako povećanje βHBA u serumu za 0,1 mmol/L iznad 1,2 mmol/L dovodi do smanjenja mliječnosti za 0,44 kg (1,8%). Razlika između blage subkliničke ketoze (razina βHBA je iznosila 1,2 mmol/L) i teškog oblika (koncentracija od 2,4 mmol/L), dovela je do pada mliječnosti za 5,8 kg u prvih 30 dana laktacije, što predstavlja veliki gubitak kako u mlijeku, tako i u novcu (Oetzel, 2015).

Opadanje proizvodnje mlijeka povezano je sa danom početka subkliničke ketoze (Raboisson i sur., 2014). Krave kojima je ketoza dijagnosticirana između 3. i 7. dana laktacije daju oko 1,8 kg (6%) manje mlijeka u prvih 30 dana laktacije nego krave kojima je ketoza dijagnosticirana između 8. i 16.-tog dana laktacije. Osim mliječnosti ovaj podatak je upozorio i na druge probleme koji su vezani za pravodobnu dijagnostiku ketoze. Kao i u drugih bolesti, tako i u ketozi, rana dijagnostika smanjuje nepovoljan utjecaj bolesti na krave jer ubrzava postupak terapije (Oetzel, 2015).

36
Izlučenje krava iz proizvodnje

Oetzel (2015) bilježi terenski rad u kojemu su utvrdili da subklinička ketoza dovodi do tri puta veće stope izlučenja krava iz uzgoja i to u prvih 30 dana laktacije u usporedbi s kravama koje su negativne na ketozu. Povećanje razine ketona u krvi dovodi i do povećanja izlučenja goveda iz proizvodnje. Za svakih 0,1 mmol/L povećanja βHBA, povećava se stopa izlučenja krava. Raboisson i sur. (2014) navodi da subklinička ketoza povećava rizik od ranog izlučenja mliječnih krava iz proizvodnje za 1,6 do 2,3 puta. Rana detekcija ketoze i njezino saniranje posebno propilen glikolom, smanjuje učestalost izlučenja krava iz uzgoja. Krave kojima nije dodavan propilen glikol imaju čak 2,1 puta veću mogućnost izlučenja iz stada u prvih 30 dana laktacije. Većinom se krave prilikom izlučenja prodaju u klaonice ili ugibaju od posljedica bolesti ili njezinih komplikacija (Oetzel, 2015).

Povećanje rizika od dislokacije sirišta

su ketozi. Uzrok bolesti je nedovoljno voluminozne hrane, premale čestice hrane, peletirana hrana, previše silaže ili koncentrata, premala popunjenost sirišta te metaboličke bolesti poput ketoze ili hipokalcemije (Benić i sur., 2012)

**Utjecaj ketoze na reprodukciju mliječnih krava**


**Utjecaj ketoze na ekonomičnost proizvodnje**

Ekonomski utjecaj ketoze može se kvantificirati, ali on je dinamičan i ovisi o mnogo čimbenika. Prvenstveno o cijeni mlijeka, gubitku mlijeka, cijeni hrane, efikasnosti hranidbe, drugim metaboličkim bolestima, broju krava izlučenih iz proizvodnje, cijeni remonta i drugome. Navodi se da subklinička ketoza proizvođača košta od 50 do 100 $ po slučaju na farmi (Oetzel, 2015).
2.10.6. Terapija ketoze

S terapijom ketoze treba početi što prije kako bi bila uspješna. U liječenju ketoze koriste se fiziološke otopine glukoze, glukoplastične tvari, tvari sa glikogenoplastičnim svojstvima i hormoni (kortikosteroidi, ACTH, inzulin) kao i sredstva za zaštitu i oporavak jetre. Ova sredstva otklanjaju hipoglikemično stanje i osiguravaju energetske potrebe organizma. U liječenju ketoze koriste se 10%, 20%, 40% ili 50% otopine glukoze. 50%-ne otopine glukoze daju se intravenozno 1 do 2 puta dnevno u količini od 200 do 500 ml dok ne dođe do oporavka životinje.

Nedostatak hipertonične otopine glukoze je što se brzo izlučuje iz organizma. 50% otopine glukoze mogu se razrijediti sa 10% otopinama i davati u manjim koncentracijama. U zavisnosti od težine slučaja u terapiji se mogu koristiti 10% otopina glukoze u količini od 0.5 do 2 litre. U težim slučajevima dobre rezultate daje infuzija kap po kap 10%-ne otopine glukoze u količini od 3 do 9 litara tokom 24 sata. Nakon aplikacije glukoze, glikemija se naglo povećava u prvom satu nakon aplikacije, a zatim opada na vrijednost koja je bila prije aplikacije glukoze. Iz tog razloga, kod jednokratne aplikacije glukoze primjenjuje se i potkožna aplikacija inzulina jer se time duže vrijeme održava viši nivo glikemije i smanjuje se gubitak glukoze preko bubrega. Inzulin se daje 10-15 min prije aplikacije glukoze u dozi od 200 do 400 II. Pored glukoze peroralno se daju glukoplastične tvari: glicerin, natrijev-propionat i propilen glikol. Glicerin se daje u dozi od 60-500 g peroralno u toku 4 do 7 dana. Uremivić (2004) navodi složenu terapiju ketoze. Prilikom ove terapije krava ma se daje 1,2 L glicerina svaki dan po kravi kroz četiri dana, zatim vitamin C 15 ml tijekom 5 dana, 1,5 kg posija u 10 L mlake vode s dodatkom jedne velike žlice obične kuhinjske soli, te lijek Plivacor 20 ml (intramuskularno ili subkutano) jednokratno, te se aplikacija lijeka ponavlja za sedam dana. Propilen glikol (ketal) se daje peroralno u količini od 250 do 400 g dva puta dnevno tokom 4 do 5 dana (Radić, 2010). Uz propilen glikol preporučava se dodavanje i niacina. Propilen glikol se prvenstveno daje u prijelaznom periodu. On se u buragu pretvara u propionsku kiselinu, a ona se zatim u jetri prevodi u glukozu. Utječe na smanjenje lipomobilizacije masti iz tjelesnih rezervi i spriječava nakupljanje masti u jetri. Također povoljno djeluje na apetiti kod krava nakon teljenja, te povisuje koncentraciju inzulina i glukoze u krvi. Propilen glikol se u praksi zna miješati sa melasom i to u omjeru 40:60. Dodaje se dnevno 300 do 400 ml i koristi u razdoblju od 15 do 20 dana prije i 15 do 20 dana poslije teljenja. Melasa uklanja neugodan miris propilen glikola, a i služi kao izvor energije. Niacin se koristi u koncentraciji od 6 do 12 g dnevno i to tri tjedna prije teljenja do sto dana.
nakon teljenja. Smanjuje pojavu ketoze i zamašćenja jetre te povećava dnevnu proizvodnju mlijeka u ranoj laktaciji za 6,5% (Uremović, 2004).

Ruegsegger i Schultz (1985) radili su pokus sa 26 krava kojima je dokazana subklinička ketoza. U testu su pokazali da je tokom 14 dana do najznačajnijeg pada koncentracije ketonskih tijela došlo u grupe koja je liječena propilen glikolom s dodatkom nijacina. Oršolić (2013) navodi da se u liječenju ketoze dodaje i do 500 ml propilen glikola. Natrijev-propionat u količini od 100 g dnevno daje se tokom nekoliko dana. Forestbacher (1993) navodi kako je propionska kiselina glukoplastična tvar koja prirodno nastaje u buragu preživača razgradnjom celuloze te kako značajno povećava razine glukoze u krvi preživača. Klorhidrat se daje u koncentraciji od 15 do 25 g peroralno jedanput dnevno u toku nekoliko dana. Za održavanje glikemije pokazala se veća efikasnost glicerina u odnosu na propilen glikol. U terapiji se upotrebljavaju kortikosteroidi i ACTH. Ovi hormoni stimuliraju glukoneogenezu, povećavaju glikemiju i sintezu glikogena te usporavaju utilizaciju glukoze u perifernim tkivima. Od kortikosteroida u terapiji ketoze koriste se kortizol, hidrokortizol i njegovi derivati (deksametazon, prednizon, prednizolon, fluorohidrokortizol i dr.). Korzzol se daje u dozi od 1 do 1.5 g, deksametazon 5 do 20 mg, prednizon i prednizolon u dozi od 100 do 400 mg i svi se dodavaju parenteralno i to većinom intramuskularno. ACTH stimulira korus nadbubrežne žlijezda da stvaraju glukokortikoidne tvari i daje se u dozi od 200 do 600 IU, a aplikacija se može ponavljati na svakih 24 sata. Liječenje masno distrofičnih promjena lipotropnim spojevima (metioninom, kolinom i cisteinom), sprječava se mogućnost uginuća životinja do čega može doći čak i poslije 4 do 5 mjeseci jer nije uspostavljena restitucija jetre. Od lipotropnih tvari u terapiji koriste se otopine acetilmietionina, cistein-klorida, kolin klorida i hidroksimetionina.
Dodatna terapija vitaminima A, B, E i preparatima za peroralnu upotrebu koji sadrže optimalne količine fosora, magnezija, kalija i kobalta, također je korisna (regulira rad predželudaca i poboljšavaju metabolizam ugljikohidrata). Davanje preparata na bazi kalcija je kontraindicirano ukoliko ne postoji hipokalcemija. Hranidba je veoma bitna u terapiji i profilaksi ketoze. Ukoliko hranidba nije adekvatna ozdravljenje često izostaje. Hranidba mora da osigura potrebnu količinu energije za osnovne i dodatne potrebe organizma. U hranidbi treba uključiti lakorazgradive ugljikohidrate npr. melasu, šećernu repu, mrkvu u umjerenoj količini, zatim zeleno kvalitetno sijeno, zelene trave i drugo. Silažu treba isključiti ili smanjiti, a povećati količinu sijena u obroku. U slučaju nedostatka apetita daju se preparati koji stimuliraju sekreciju žuči (hidrokoleretika), ubrzavaju tok žuči (koleretika) ili izazivaju jače kontrakcije žučne vrećice (kolagoga). U tu svrhu se koriste natrij ili magnezij sulfat (50 do 100 g kroz nekoliko dana). Neki stručnjaci preporučuju da se krave ne mazu više od jedanput dnevno za vrijeme trajanja bolesti (Radić, 2010)

Slika 7. Intravenozna aplikacija glukoze

2.10.7. Profilaksa ketoze

Radić (2010) tvrdi da u prevenciji ketoze najznačajniju ulogu ima hranidba. Visoka proizvodnja mlijeka i reprodukcija zahtijevaju intenzivnu njegu životinja i hranidbu s pravilno izbalansiranim obrocom. Pravilno izbalansirani obroci s dovoljno energije smanjuju mogućnost nastanka ketoze. Zobel (2011) navodi da je glavna prevencija gladne ketoze upotreba visokoenergetskih krmiva poput kukurzne prekrupe. Dodatak sjecane slame u obroč životinja tijekom suhostaja izvrstan je način da se poveća zapreminina buraga, no sastav hrane u pogledu količine bjelančevina i energije mora biti zadovoljavajuć. Slama mora biti čista (nikako ne smije biti prašnjava, blatna ili pljesniva) te nasjeckana na duljinu od oko 2 do 3 cm, a daje su količini od oko 0.5 kg po kravi na dan. Važno je da se u periodu suhostaja hranidba silažom smanji ili isključi, te da se izbjegava pretjerano debljanje krava koje kasnije imaju veću mogućnost razvijanja ketoze. Preventivno se mogu davati propilen glikol i natrij-propionat nekoliko dana prije teljenja. U cilju ranog otkrivanja i liječenja ketoze, kravama se nekoliko dana prije i poslije porođaja mogu vršiti preventivni klinički testovi na ketonska tijela. Osim ishrane treba se obratiti pozornost na mikroklimatske uvijete, napajanje životinja i napućenost objekta (Radić, 2010).
3. MATERIJALI I METODE

U ovom diplomskom radu utvrđivala se učestalost pojava ketoze na pet hrvatskih farmi na području Baranje. Izvršena je usporedba podataka za 2014. i 2015. godinu (za 2015.godinu do mjeseca kolovoza) te usporedba sa svjetskim standardima. Voditelji farmi htjeli su ostati anonimni stoga se imena i točne lokacije farmi u radu neće spominjati. Radi toga uvedene su brojčane oznake farmi 1, 2, 3, 4 i 5.

Ketoza na ovim farmama se testira sistematski. Testovi na ketozu se obavljaju na svim svježe oteljenim kravama, višetelkama i prvotelkama. Testovi se obavljaju 5. i 24.-tog dana nakon teljenja. Test se radi 5.-tog dana jer je utvrđeno da je u tome periodu najveća koncentracija ketonskih tijela te je tada najadekvatnije vrijeme za dijagnozu ketoze. Preventivno keto test se obavlja i 24.-tog dana laktacije kako bi se utvrdilo koliko je krava izliječena te kod kolikog broja krava se treba nastaviti sa terapijom. Također na farmama se radi i kontrola ketoze u suhostaju. Pri tome, kontrola se vrši preventivno i po potrebi kada se posumnja da određena krava ima mogućnost razvoja ketoze u kasnijem periodu.

Prilikom monitoringa ketoze koristio se krvni klinički test. Testiranja smo izvršili pomoću uređaja Precision Xtra koji osim ketonskih tijela može određivati i razinu glukoze u krvi. Krv smo vadili iz repne vene (v.caudalis). Kap krvi stavljali smo na reakcijsku trakicu samog uređaja te smo u roku od 10 do 15 sekundi očitali precizne rezultate. Kao granične vrijednosti uzeli smo koncentracije βHBA od 1,2 do 1,4 mmol/L. Utvrđivanjem koncentracije od 1,2 mmol/L petog dana laktacije počinje se s preventivnim liječenjem gdje se koristi propilen glikol (300 ml) kroz pet dana i dodavanjem vitamina B-kompleksa. Terapija je trajala pet dana, kada se opet vrši keto test. Ako koncentracija nije pala ispod granične vrijednosti terapija se nastavlja opet kroz narednih pet dana. Prilikom utvrđivanja koncentracije od 1,4 mmol/L ili više terapiju smo vršili dodatkom glukoze i kortikosteroida. Granična vrijednost za krave u suhostaju je znatno niža i iznosi 0,6 mmol/L.
4. REZULTATI I RASPRAVA

Monitoringom svježe oteljenih krava 5. i 24.-tog dana nakon teljenja kroz razdoblje od siječnja do prosinca 2014.godine i od siječnja do kolovoza 2015. godine pokazao je rezultate prikazane u Tablicama 2. i 3.

Tablica 2. Rezultati kontrole ketoze na nekoliko farmi u Istočnoj Slavoniji u 2014.-toj godini

<table>
<thead>
<tr>
<th>Podaci za 2014.-tu godinu od siječnja do prosinca</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Farma</strong></td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td><strong>Ukupan broj krava</strong></td>
</tr>
<tr>
<td><strong>Broj krava na mužnji</strong></td>
</tr>
<tr>
<td><strong>Broj višetelki na mužnji</strong></td>
</tr>
<tr>
<td><strong>Broj prvotelki na mužnji</strong></td>
</tr>
<tr>
<td><strong>% krava na mužnji</strong></td>
</tr>
<tr>
<td><strong>% krava u suhostaju</strong></td>
</tr>
<tr>
<td><strong>Pozitivno na ketozu 5 dana</strong></td>
</tr>
<tr>
<td><strong>Broj testiranih 5-tog dana</strong></td>
</tr>
<tr>
<td><strong>% pozitivnih 5-tog dana</strong></td>
</tr>
<tr>
<td><strong>Pozitivno na ketozu 24-tog dana</strong></td>
</tr>
<tr>
<td><strong>Broj testiranih 24-tog dana</strong></td>
</tr>
<tr>
<td><strong>% pozitivnih 24-tog dana</strong></td>
</tr>
<tr>
<td><strong>Ukupno pozitivno na ketozu</strong></td>
</tr>
<tr>
<td><strong>Ukupan % pozitivnih krava</strong></td>
</tr>
</tbody>
</table>

Iz Tablice 2. vidi se da su najbolje rezultate ostvarile farme broj 3 i 5. Farma broj 3 imala je najmanju učestalost ketoze te je tako prevelencija ketoze na ovoj farmi petog dana testiranja bila svega 6,5 %. Tog dana testirana je 321 krava, a pozitivnih je bilo njih 21. Dvadesetčetvrtog dana ova postotak se snizio na 3,1 %, da bi ukupan broj pozitivnih krava bio svega 4,9 %. Farma broj 5 ostvarila je drugu najnižu učestalost te je tako ukupni postotak ketoze na ovoj farmi bio 5 %. Petog dana na ovoj farmi je testirano 1552 krave, od čega je pozitivno na ketozu bilo njih 107. Dvadesetčetvrtog dana na ovoj farmi bilo je 50 slučajeva ketoze od 1610 testiranih krava. Uz ovaj podatak vrlo je važno napomenuti za farmu broj pet da ima najveći broj grla (1119,7) te da je prosječna mliječnost bila izrazito velika (muzni
prosjek 10 100 litara). Zbog toga ovako nizak prosjek ketoze pokazuje vrlo dobar menadžment na ovoj farmi.

Farma s najvećom učestalosti ketoze je farma broj jedan. Na ovoj farmi petog dana testiranja utvrđeno je čak 18,3% krava pozitivnih na ketozu, da bi ukupni postotak iznosio 12,1%. Petog dana od ukupno testiranih 968, njih 177 je bilo pozitivno na ketozu, dok je dvadesetetvrtog dana taj postotak ipak bio niži. Tog dana na ketozu je bilo pozitivno 59 krava od 980 testiranih. Da bi se utvrdio razlog ovako velikih razlika treba se pogledati u hranidbu i druge zootehničke čimbenike koji se provode na farmama što nije bila tema ovog rada.

Tablica 3. Rezultati kontrole ketoze na nekoliko farmi u Istočnoj Slavoniji u 2015.-toj godini

<table>
<thead>
<tr>
<th>Farma</th>
<th>Farm.1</th>
<th>Farm.2</th>
<th>Farm.3</th>
<th>Farm.4</th>
<th>Farm.5</th>
<th>Ukupno</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Ukupan broj krava</strong></td>
<td>979,4</td>
<td>466,3</td>
<td>461,7</td>
<td>305,6</td>
<td>1820,6</td>
<td>4033,6</td>
</tr>
<tr>
<td><strong>Broj krava na mužnji</strong></td>
<td>882,3</td>
<td>412,9</td>
<td>412,1</td>
<td>276,3</td>
<td>1598,7</td>
<td>3582,3</td>
</tr>
<tr>
<td><strong>Broj višetelki na mužnji</strong></td>
<td>577,3</td>
<td>263</td>
<td>256,7</td>
<td>177,4</td>
<td>489,6</td>
<td>1764</td>
</tr>
<tr>
<td><strong>Broj prvotelki na mužnji</strong></td>
<td>305</td>
<td>149,9</td>
<td>155,4</td>
<td>95</td>
<td>1109,1</td>
<td>1814,4</td>
</tr>
<tr>
<td>% krava na mužnji</td>
<td>90,1</td>
<td>88,5</td>
<td>89,3</td>
<td>90,4</td>
<td>87,8</td>
<td>88,8%</td>
</tr>
<tr>
<td>% krava u suhostaju</td>
<td>9,9</td>
<td>11,5</td>
<td>10,7</td>
<td>9,6</td>
<td>12,2</td>
<td>11,2%</td>
</tr>
<tr>
<td>Pozitivno na ketozu 5 dana</td>
<td>95</td>
<td>88</td>
<td>36</td>
<td>18</td>
<td>45</td>
<td>282</td>
</tr>
<tr>
<td>Broj testiranih 5-tog dana</td>
<td>396</td>
<td>221</td>
<td>212</td>
<td>141</td>
<td>670</td>
<td>1640</td>
</tr>
<tr>
<td>% pozitivnih 5-tog dana</td>
<td>24,0</td>
<td>39,8</td>
<td>17</td>
<td>12,8</td>
<td>6,7</td>
<td>17,2%</td>
</tr>
<tr>
<td>Pozitivno na ketozu 24-tog dana</td>
<td>14</td>
<td>20</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>62</td>
</tr>
<tr>
<td>Broj testiranih 24-tog dana</td>
<td>390</td>
<td>194</td>
<td>210</td>
<td>121</td>
<td>720</td>
<td>1635</td>
</tr>
<tr>
<td>% pozitivnih 24-tog dana</td>
<td>3,6</td>
<td>10,3</td>
<td>4,3</td>
<td>7,4</td>
<td>1,4</td>
<td>3,8%</td>
</tr>
<tr>
<td>Ukupno pozitivno na ketozu</td>
<td>109</td>
<td>108</td>
<td>45</td>
<td>27</td>
<td>55</td>
<td>344</td>
</tr>
<tr>
<td>Ukupan % pozitivnih krava</td>
<td>13,9</td>
<td>26</td>
<td>10,7</td>
<td>10,3</td>
<td>4,0</td>
<td>10,5%</td>
</tr>
</tbody>
</table>
Podatci za dosadašnji dio 2015-te godine sugeriraju da je farma sa najmanjom učestalosti ketoze, bila farma broj pet. Unatoč najvećem broju grla (1820,6) i vrlo velikoj mliječnosti, podatci pokazuju da je ukupna učestalost ketoze na ovoj farmi 4%. Tako je petog dana testirano 670 krava i od toga je pozitivno na ketozu bilo 45 te tako postotak pozitivnih krava iznosio 6,7 %. Dvadesetčetvrtog dana testirano je 720 krava, te se ustanovilo da ketozu ima svega 10 krava, što predstavlja 1,4 % pozitivnih krava.

Drastično pogoršanje se vidi na farmi broj dva kod koje je petog dana postotak krava u ketozi iznosio 39,8 %, to jest, od 221 testirane krave njih 88 bilo je pozitivno na ketonska tijela. Dvadesetčetvrtog dana bilo je 10,3 % krava sa ketozom, to jest, od 194 testiranih njih 20 je imalo ketozu. Ukupno do sad je bilo 26 % krava kod kojih se dijagnosticirala ova metabolička bolest.

Usporedba ovih rezultata u ove dvije godine od iznimne je važnosti u praćenju rada i menadžmenta na farmama. Sama učestalost ketoze odražava hranidbeno, mikroklimatsko i zdravstveno stanje na pojedinoj farmi. Uspoređujući dvije godine vidi se da farma broj 5 ima najveću konstantu, te se na ovoj farmi vidi da je usprkos drastičnom povećanju grla (s 1119,7 na 1820,6) na farmi došlo čak do pada učestalosti ketoze sa 5 na 4 %. Gledajući kroz ove dvije tablice lako je uočiti da je najviše nazadovala farma broj 2. Na ovoj farmi je došlo do drastične promjene u učestalosti. Postotak se popeo se 10,2 % u 2014.-toj godini na čak 26 % u prvih osam mjeseci 2015.-te godine. Na ostalim farmama također je uočljivo pogoršanje stanja ketoze te se i na ostale tri farme vidi rast postotka. Tako se postotak na farmi broj jedan popeo za 1,8 %, na farmi broj tri za 5,8 % je više ketoze u 2015.-toj godini u odnosu na 2014.-tu, a na farmi broj četiri došlo je do povećanja za 0,9 %. Uspoređujući sa autorima koji su spomenuti u radu vidi se da učestalost ketoze na hrvatskim farmama varira od farme do farme. Oetzel (2015) navodi da je u svom istraživanju petog dana utvrdio učestalost ketoze od 28,9 %. Dohoo i Martin (1983) su u svom istraživačkom radu utvrdili učestalost ketoze od 12,1 %, a Gerret (2007) je odredio prosječnu učestalost od 15,7 %. Prema ovim podacima vidi se da se farma broj pet može svrstati u farme sa izrazito niskom učestalosti ketoze.

Što se tiče pasminske sastave muznih krava na ovim farmama, prevladavaju većinom holstein frizije krave, a u vrlo malom omjeru nalaze se i druge pasmine. Brojno stanje krava na farmama je raznoliko.
5. LITERATURA


6. ZAKLJUČAK

Podatci o učestalosti pojave ketoze uvelike mogu potpomoći u otkrivanju hranidbenog, mikroklimatskog i zdravstvenog stanja na farmama. Učestalosti pojave koje smo dobili na pet farmi u Republici Hrvatskoj potvrđuju da se visokoproduktivne hrvatske farme nalaze u svjetskom prosjeku.

Također uviđamo da učestalost varira od farme do farme što ovisi o brojnim čimbenicima. Kako su ketoza i negativni energetski balans vrlo kompleksna stanja u samo problematiku moramo uključiti brojne faktore. U prvom redu hranidbu, koja je za visokoproduktivne krave najvažnija u periodu suhostaja i rane laktacije. Osim hranidbe treba obratiti pozornost na mikroklimatske uvjete, njegu životinja, zdravstveno stanje, reproduktivni status, smještaj i napućenost objekata.

Postotak ketoze preko 10% trebao bi biti određeni alarm. Pri ovom postotku vidi se da menadžment na farmama, te pogotovo hranidbu treba korigirati i izbalansirati. Ovako visok postotak ketoze i nastanak negativnog energetskog balansa u kasnijim fazama i daljnoj proizvodnji može imati ključnu ulogu. Upravo zbog ovih stanja može doći do povećanja izlučenja grla iz proizvodnje, poremećaja reprodukcije, drugih metaboličkim bolesti, pada mliječnosti i velikih ekonomskih gubitaka.
7. SAŽETAK

Negativni energetski balans i ketoza predstavljaju veliki problem na farmama. Učestalost ovih poremećaja se povećava s velikom mliječnosti mliječnih krava te se problem još produbljuje neadekvatnom hranidbom ili nepovoljnim vanjskim čimbenicima.

U radu se pokazalo da se pojavnost ketoze na pet naših farmi kreće od 4 do 26 % što predstavlja veliku varijabilnost. Problem predstavljaju postotci ketoze koji se kreću iznad 10 % te se posebno kod ovih farmi treba posvetiti pozornost pripremi krava na laktaciju. Pravu uzročno posljedičnu vezu treba tražiti u hranidbi krava na ovim farmama i to posebno u kasnom graviditetu, suhostaju i pri početku laktacije. Veliki nedostatak energije u prijelaznom razdoblju praćen sa slabijim apetitom krava nakon teljenja te velikom proizvodnjom mlijeka izaziva hipoglikemiju, lipomobilizaciju masti iz tjelesnih rezervi, te dovodi do naglog opadanja tjelesne mase. Uz veliku lipomobilizaciju i manjak energije stvaraju se odlični preduvjeti za nastanak subkliničke ketoze. Ovaj oblik ketoze nema simptome te ga je vrlo teško dijagnosticirati i predstavlja najveći problem za farmere.

**Ključne riječi:** mliječne krave, ketoza, negativni energetski balans, keto-test
8. SUMMARY

Negative energetic balance and the ketosis represent a big problem on the farms. The frequency of these disorders is increasing with big milk production of dairy cows and the problem is deepened with inadequate feeding or unfortunate external factors. This thesis has shown that the presence of ketosis in five of our farms goes from 4 to 26% which shows big variability. The problem is the percentage of ketosis that goes from 10% and a special attention should be payed to these farms during the milking process. The true causality should be searched in feeding of the cows on these farms and especially in late gravidity, dry period and in the beginning of the lactation. The big shortage of energy during the transitional period followed by weak appetite of cows after calving and the big milk production causes hypoglycemia, lipomobilisation of the fats form body reserves and leads to a sudden decrease in weight. The big lipomobilisation and the lack of energy are great for emergence of ketosis. The real problem is subclinical ketosis which is in this paper pointed out as an important problem in cattle breeding. This type of ketosis, which has no symptoms is very hard to diagnose.

Key words: dairy cows, ketosis, negative energetic balance, keto-test
9. POPIS TABLICA

Tablica 1. Pokazatelji ocjene tjelesne kondicije mliječnih krava, Stranica 20

Tablica 2. Rezultati kontrole ketoze na nekoliko farmi u Istočnoj Slavoniji u 2014.-toj godini, Stranica 45

Tablica 3. Rezultati kontrole ketoze na nekoliko farmi u Istočnoj Slavoniji u 2015.-toj godini, Stranica 46
10. POPIS SLIKA

Slika 1. Laktacijska krivulja, *Stranica 4*

Slika 2. Metaboličke promjene pri NEB-u, *Stranica 15*

Slika 3. Vanjski izgled krave u ketozi, *Stranica 21*

Slika 4. Shema nastanka ketonskih tijela, *stranica 27*

Slika 5. Trakica za određivanje ketonskih tijela u mlijeku, *Stranica 33*

Slika 6. Uređaj za mjerenje ketonskih tijela u krvi (Precision Xtra, Abbott Laboratories, Illinois, Sjedinjene Američke Države). *Stranica 34*

Slika 7. Intravenozna aplikacija glukoze, *Stranica 42*
UTJECAJ STANJA NEGATIVNE ENERGETSKE RAVNOTEŽE KRAVA NA PROIZVODNJU MLJEKE

Petar Katinić

Sažetak: Negativni energetski balans i ketoza predstavljaju veliki problem na farmama. Učestalost ovih poremećaja se povećava sa velikom mliječnosti mliječnih krava, te se problem još produbljuje neadekvatnom hranidbom ili nepovoljnim vanjskim čimbenicima. U radu se pokazalo da se pojavnost ketoze na pet naših farmi kreće od 4 do 26 % što predstavlja veliku varijabilnost. Problem predstavljaju postotci ketoze koji se kreću iznad 10 % te se posebno kod ovih farmi treba posvetiti pozornost pripremi krava na laktaciju. Pravu uzročnu posljedičnu vezu treba tražiti u hranidbi krava na ovim farmama i to posebno u kasnom graviditetu, suhostaju i pri početku laktacije. Veliki nedostatka energije u prijelaznom razdoblju praćen sa slabijim apetitom krava nakon teljenja, te velikom proizvodnjom mlijeka izaziva hipoglikemiju, lipomobilizaciju masti iz tjelesnih rezervi, te dovodi do naglog opadanja tjelesne mase. Uz veliku lipomobilizaciju i manjak energije stvaraju se odlični preduvjeti za nastanak ketoze. Ovaj oblik ketoze nema simptome te ga je vrlo teško dijagnosticirati.

Rad je izrađen pri: Poljoprivredni fakultet u Osijeku

Mentor: prof.dr.sc. Marcela Šperanda

Broj stranica: 58
Broj grafikona i slika: 0/7
Broj tablica: 3
Broj literaturnih navoda: 31
Broj priloga: 0
Jezik izvornika: Hrvatski

Ključne riječi: Mliječne krave, negativni energetski balans, ketoza, ketonska tijela, laktacija

Datum obrane:

Stručno povjerenstvo za obranu:
1. prof.dr.sc. Pero Mijić, predsjednik
2. prof.dr.sc. Marcela Šperanda, mentor
3. doc.dr.sc. Mislav Đidara, član

Rad je pohranjen u: Knjižnica Poljoprivrednog fakulteta u Osijeku, Sveučilištu u Osijeku, Kralja Petra Svačića 1d.
INFLUENCE OF NEGATIVE ENERGY BALANCE IN COWS ON MILK PRODUCTION

Petar Katinić

Abstract: Negative energetic balance and the ketosis represent a big problem on the farms. The frequency of these disorders is increasing with big milk production of dairy cows and the problem is deepened with inadequate feeding or unfortunate external factors. This thesis has shown that the presence of ketosis in five of our farms goes from 4 to 26% which shows big variability. The problem is the percentage of ketosis that goes from 10% and a special attention should be payed to these farms during the milking process. The true causality should be searched in feeding of the cows on these farms and especially in late gravidity, dry period and in the beginning of the lactation. The big shortage of energy during the transitional period followed by weak appetite of cows after calving and the big milk production causes hypoglycemia, lipomobilisation of the fats form body reserves and leads to a sudden decrease in weight. The big lipomobilisation and the lack of energy are great for emergence of ketosis. The real problem is subclinical ketosis which is in this paper pointed out as an important problem in cattle breeding. This type of ketosis, which has no symptoms is very hard to diagnose.

Thesis performed at: Faculty of Agriculture in Osijek

Mentor: prof.dr.sc. Marcela Šperanda

Number of pages: 58
Number of figures: 0/7
Number of tables: 3
Number of references: 31
Number of appendices: 0
Original in: Croatian

Key words: dairy cows, negative energetic balance ketosis, ketone bodies, lactation

Thesis defende on date:

Reviewers:
1. prof.dr.sc. Pero Mijić, predsjednik
2. prof.dr.sc. Marcela Šperanda, mentor
3. doc.dr.sc. Mislav Đidara, član

Thesis deposited at: Library, Faculty of Agriculture in Osijek, Josip Juraj Strossmayer University of Osijek, Kralja Petra Svačića 1d.